

COMUNICACIÓN DE DATOS (IC323)

Trabajo Práctico N°5

Modulación Analógica y Digital

Parte A: AM de Gran Portadora (DSB-LC)

Ejercicio 1

Una señal portadora $v_c(t) = 10\cos\left(2\pi \cdot 1000 \ kHz \cdot t\right)$ es modulada en amplitud por una señal de audio (moduladora) $v_m(t) = 5\cos\left(2\pi \cdot 5 \ kHz \cdot t\right)$.

- a) Calcular el índice de modulación (m).
- b) Escribir la ecuación matemática de la señal AM resultante $v_{AM}(t)$.
- c) Determinar la amplitud máxima y mínima de la envolvente de la señal modulada.
- d) Identificar la frecuencia de la portadora (f_c) , la frecuencia de la banda lateral superior (USB) y la frecuencia de la banda lateral inferior (LSB).
- e) Dibujar el espectro en frecuencia de la señal $v_{AM}(t)$, mostrando las amplitudes y frecuencias de estos tres componentes.
- f) ¿Cuál es el ancho de banda total (BW) ocupado por la transmisión AM?

Ejercicio 2

Un transmisor de AM (DSB-LC) emite una potencia de portadora (P_c) de 40 W y usa un índice de modulación de 0,707 (m = 0,707).

- a) Calcular la potencia total en las bandas laterales (P_s) .
- b) Calcular la potencia total transmitida (P_t).
- c) Calcular la eficiencia de la transmisión (μ) y compararla con la eficiencia máxima teórica del 33 %.

COMUNICACIÓN DE DATOS (IC323)

Parte B: AM con Portadora Suprimida (DSB-SC y SSB)

Ejercicio 1

Una señal de voz tiene un ancho de banda de 4 kHz ($f_m = 4 \ kHz$). Se desea transmitir usando una portadora de $f_c = 500 \ kHz$.

- a) Dibujar el espectro (de forma esquemática) si se modula usando DSB-SC (Doble Banda Lateral con Portadora Suprimida). Indicar el ancho de banda.
- b) Dibujar el espectro si se modula usando SSB (Banda Lateral Única, solo superior). Indicar el ancho de banda.
- c) ¿Cuál es la principal ventaja de SSB sobre DSB-SC?

Ejercicio 2

Investigar y responder utilizando sus propias palabras las siguientes preguntas:

- a) ¿Qué tipo de circuito simple se utiliza para demodular una señal de AM estándar (DSB-LC)?
- b) ¿Por qué ese circuito simple no funciona para demodular una señal DSB-SC?
- c) ¿Qué tipo de demodulación se requiere para DSB-SC y qué inconveniente presenta si el oscilador local no es perfecto?

Ejercicio 3

Observar el diagrama "Multiplexación por cuadratura de fase" de la presentación de teoría (página 21 del PDF). Este sistema transmite dos señales, $f_1(t)$ y $f_2(t)$, usando la misma frecuencia portadora f_c .

- a) ¿Cuál es la propiedad que permite que las dos señales viajen en la misma frecuencia y puedan separarse en el receptor?
- b) En el receptor, ¿qué bloque (componente) es el responsable final de atenuar los términos de alta frecuencia $(2\omega_c)$ y recuperar las señales $e_1(t)$ y $e_2(t)$?

COMUNICACIÓN DE DATOS (IC323)

Parte C: Modulación Digital (Portadora Única)

Ejercicio 1

Se transmite una señal de datos binarios NRZ(L) utilizando conmutación de amplitud (OOK) a una velocidad de 1Mbps. Suponer unos y ceros equiprobables. Determinar y graficar la densidad espectral de potencia alrededor de la frecuencia de la portadora para una serie alterna de unos y ceros.

Ejercicio 2

Se transmiten datos binarios NRZ a 300 bps a través de un canal telefónico usando FSK con frecuencias de transmisión de 2025 y 2225 Hz:

- a) Suponiendo un ancho de banda de 800 Hz centrado en la portadora, calcular la probabilidad de error mínima si la razón señal-ruido promedio es de 8 dB.
- b) Repetir para S/N=7 dB.

Ejercicio 3

Utilizando modulación BPSK, la serie de satélites GOES (*Geostationary Orbiting Experimental Satellite*) transmite datos meteorológicos a una velocidad de 1,75 Mbps. Suponiendo que $\eta = 1,26 \times 10^{-20} W/Hz$ (que corresponde a la temperatura de ruido del sistema receptor de 229 K) y que las pérdidas totales de la trayectoria y del sistema, incluyendo la ganancia de antena, son de 144 dB, calcular la mínima potencia de transmisión del satélite necesaria para una $P_e = 10^{-7}$.