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ABSTRACT

Photovoltaic (PV) water pumping system has been becoming increasingly important in remote, isolated,
and non-electrified population, where either accessibility to the grid is difficult to establish or
implementation cost is indeed very high. In such location, PV water pumping application is significant
area of interest for sustainable development. In this article, DC and induction motor as part of multi and
single stage water pumping system has been reviewed. The maximum power point (MPP) at which PV
system is to be operated is tracked by peak power tracker to utilize solar power. Therefore, the peak
power tracking algorithms with voltage, current, duty cycle, and frequency as perturbation parameters
under uniform and non-uniform insolation are also presented. Review reports on PV emulators used for
evaluation of new MPPT control techniques, and microcontroller based implementations of MPPT
controller are also presented. Thus, this article becomes reference document for developing DC/AC PV
water pumping system.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The solar energy is fast gaining importance due to climate
change mitigation policies, programmes, and rapid depletion of
conventional sources of energy. Government of India, in its
Jawaharlal Nehru Solar Mission toward building SOLAR INDIA
proposes off-grid solar applications up to 200 MW (2010-2013)
in Phase I, 1000 MW (2013-2017) in Phase II, and up to 2000 MW
(2017-2022) in Phase III [1]. Environment friendly solar energy is
abundant in nature, and most parts of India receive 4-7 kWh of
solar radiation per square meter per day with 250-300 sunny
days. The solar energy is utilized either in its thermal form or in
photovoltaic form. Applications which use the thermal form of
solar energy are cookers, water heaters, dryers, water purifiers,
etcetera. The lanterns, street lighting, home lighting, and water
pumping are few applications which use the photovoltaic form of
energy.

Photovoltaic (PV) systems are modular and have a low running
cost as no moving parts are involved. PV modules have a
comparatively long life and the balance of system (BOS) requires
minor maintenance. However, PV systems suffer from a high initial
investment cost, low solar-to-electric power conversion efficiency,
and non-linear voltage-current (V-I) characteristics. Notwithstand-
ing these drawbacks, PV systems have emerged as one of the most
potent alternative energy source to grid power supply for feeding
stand alone applications.

The major interest in the subject is in reducing the pay-back
period in terms of improved efficiency and performance, as well
as, reducing the number of components to decrease overall cost.
Therefore, researchers have been focusing on three major areas,

® Manufacturing process of solar arrays: many research efforts
have been taking place to improve the manufacturing process

of PV cells and its material [2-4].
® Controlling the insolation input to the PV arrays: The intensity

of insolation impinging on the surface of the PV array is
maximized by using sun-tracking solar collectors [5], [6] or
by rearrangement of solar cells configuration of PV array
corresponds to changes in environmental conditions [7], [8].

e Utilization of output electric power of the solar arrays: efforts
are being made to improve effective utilization of solar energy
in off-grid / on-grid PV stand alone applications [9-21].

The reasons for reviewing PV water pumping systems in
particular are that the grid power supply fed pumps used for
potable and irrigation purposes experience four important pro-
blems; a. Cost of motor burn outs and its repair due to voltage
fluctuations, b. Lower crop yields due to irrigation activities
affected by shortages in the supply of electricity, c. Transmission
& distribution losses and d. This has been made affordable by
utilizing the government subsidies which affects growth in devel-
oping countries. Moreover, advancements in design of motors,
availability of cost effective high speed digital signal controllers,
decrease in the cost of photovoltaic modules, rapid developments
in the state-of-art power conversion devices, as well as, topologies
of power circuit, and more significantly, the policies of the
government have accelerated the growth of PV applications.

PV water pumping system [22-24] is broadly classified as DC
and AC motor pumping systems [25]. The DC motor based PV
water pumping systems consist of a PV array, with or without an
intermediate converter, and a motor coupled with a pump. The AC
motor water pumping systems requires a DC-AC inverter for
converting intermediate converter output voltage or directly PV
voltage in to a variable voltage | variable frequency power source.
The intermediate converter employed with a peak power tracking
algorithm matches the load impedance to the optimum internal
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Fig. 1. Effect of perturbation on V-P characteristics and MPP variations.
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Fig. 2. MPPT Tracking using a DC-DC converter in Voltage Mode Control.
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Fig. 3. MPPT Tracking using a DC-DC converter in Current Mode Control.

impedance of the PV array in order to utilize the optimum solar
power. The point at which this occurs is called the maximum
power point (MPP). The MPP varies for changing insolation and
temperature in addition to wind, dirt, etcetera. The dynamic
adjustment of the MPP at which the PV system is to be operated
to extract the maximum power is called maximum power point
tracking (MPPT). This controller is called MPPT controller, and it is
implemented invariably with a DC-DC converter and a peak power
tracking algorithm. In a parallel development, the induction motor
based water pumping system which is referred here as AC water
pumping system has found much interest among researchers due
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Fig. 4. Variation of Factor k, for changes in insolation at different temperature.

to its low cost, low maintenance, high reliability, rugged design,
small sizes, and availability of high efficiency motors.

Off-grid stand-alone water pumping systems utilizing induc-
tion motors can be classified as multistage and single stage. In
both systems, the water storage tank is considered as an indirect
energy storage device instead of battery modules to completely
utilize the solar power. The size of the tank should be compatible
with the capacity of the PV array and the maximum possible
insolation at the location of usage.

The comprehensive review report on DC motor pump with
peak power tracking algorithms, induction motor as a part of multi
and single stage water pump are presented. Single stage water
pumping system is high efficient, low cost, and simple to control.
Therefore, more emphasis is given for single stage system. The
MPP tracking under partially shaded condition is difficult to
achieve due to multiple peak displayed by voltage-power (V-P)
characteristics of PV array. Hence, peak power tracking algorithms
under partially shaded insolation are overviewed. The microcon-
troller based system is fast gaining importance in PV system, and
thus it is also reported. It is always important to evaluate the
newly developed MPPT algorithms without using PV array. The
references which present procedure for validating MPPT algo-
rithms without using actual PV modules are presented.

2. DC motor water pump

In early 1980 s, the starting, steady state, and transient perfor-
mances of solar power fed DC motors for linear and centrifugal
pump load torques were analyzed for photovoltaic applications
without intermediate converters [26-30]. These motors were
bulky, and require frequent maintenance. Solar power fed perma-
nent magnet brushless DC (PMBLDC) motors have been used for
water pumping applications with and without intermediate con-
verter [31-34]. The intermediate converters are in general DC-DC
converters. These are used to track the peak power point and
operate the PV system at the same point to completely utilize solar
power. Peak power tracking algorithms are reviewed in detail as
follows,

2.1. Peak power tracking algorithms

The controller which tracks the MPP consists of a power
electronic converter working with any one of the peak power
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Fig. 5. Variation of factor k; for changes in insolation at different temperature.

tracking algorithms. The objective of the MPPT controller is to find
the voltage V,,, or current I, at which the PV system should be
operated to utilize the maximum PV power P,, during changes in
atmospheric conditions. In a DC-DC converter based MPPT con-
troller, the reference voltage or current is perturbed either with a
positive step if the slope of power is positive or with a negative
step if the slope of the power is negative to approach the MPP as
depicted in Fig. 1 using either voltage mode control as shown in
Fig. 2 or current mode control as shown in Fig. 3 [35-37].

The MPP can also be tracked by perturbing directly on the duty
ratio. The different MPPT techniques which use the power electronic
converters, mainly a DC-DC converter to vary the current coming
from a PV array have been reported in the literature [38-40]. Many
MPPT techniques have been developed and have been continuously
improved by researchers in terms of simplicity, sensor reduction,
speed of response, cost, range of effectiveness, hardware implemen-
tation, etcetera [40-48]. Among the various MPPT algorithms
reported, look-up tables, fractional open circuit voltage, fractional
short circuit current, and usage of a test cell are simple and easy to
implement [49]. The reported popular perturbation methods are
Hill-climbing (HC) [50], Perturb and Observe (PAO) [51], [52],
Incremental Conductance (IncCond) [53], [54], and Artificial Intelli-
gence (Al) methods [55-57]. The fundamental MPPT techniques are
discussed in the following paragraph.

2.1.1. Look-up table method

In this technique, all the requisite data for changes in insolation
and temperature is recorded and stored in the memory. This
technique is simple and it exhibits a fast response in tracking
the MPP. However, it is difficult to record and store all possible
data of atmospheric variations. Moreover, it requires a large
memory capacity [14], [15].

2.1.2. Fractional open-circuit voltage

The optimum linear relationship between V,,, and V, of the PV
array for varying insolation and temperature levels results in the
fractional open-circuit voltage MPPT method. The relation is given
by,
Vin=kyVoc (M
where k, is a constant of proportionality and it is dependent on
the characteristics of the PV array used in the application. The

constant k, is determined beforehand by measuring V,. and V,, at
different insolation and temperature levels [49].
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The simulation results given in Fig. 4 shows that the factor k,
lies in between 0.79 and 0.88 for variation of insolation from 20%
to 100% for temperature variations from -10 °C to 50 °C. V. is
measured by opening a switch connected in series to the PV array.

2.1.3. Fractional short-circuit current
Under varying insolation and temperature, I, is related
approximately linear to the I of the PV array and it is given by [9],

I = kil )

where k; is proportionality constant and it is dependent on the
characteristics of the PV array in use. From Fig. 5, k; is found to lie
between 0.9 and 0.94 for the variation of insolation at the
temperature span of -10°C to 50 °C. When a boost DC-DC
converter is used, Iy is measured by shorting a converter switch
periodically. In any other arrangements, an additional switch is
needed to short the PV array for the measurement of I, which
increases the number of components and cost.

2.14. Test cell method

In fractional open-circuit and short-circuit current techniques,
shorting and opening of the PV array is done at the rate of
switching frequency. During this period, the power delivered to
the load is affected. Therefore, the measurement of V,. or Iy is
done with a dummy cell which is expected to match the char-
acteristics of an active cell. However, it is difficult to have same
characteristics of a dummy cell as that of an active cell and it also
increases the cost [58].

2.1.5. Constant voltage control

In this method, the true MPP voltage is approximately equal to
the regulated reference voltage, since variation of V,, for changes
in insolation is small. This method can be implemented by the
measurement of V,,, alone using a DC-DC converter. This method is
represented by [59],

Vier(—1)+8VV (1) < Vo

Viegg(n=1)V(1) =V of 3
Viep(n—=1)=6VV(1) >V op

Vref (n) =

This technique performs sufficiently well for low insolation. For
higher insolation, this method is combined with other methods to
get satisfactory results.

2.1.6. Perturbation techniques

In perturbation techniques, the value of an operating para-
meter, such as voltage, current, and duty cycle is incremented or
decremented to approach the MPP through predefined step size
based on the changes in power observed in previous perturbation.
These techniques do not depend on the PV module specifications.
They are independent of variations in temperature, insolation,
wind, dirt, and aging. However, these techniques take finite time
to identify the MPP, and the PV system oscillates around the MPP.
The oscillation can be minimized by using smaller step sizes.
However, a smaller step size slows down the MPPT process. As a
solution to this situation, the variable perturbation step size which
becomes smaller as it approaches the MPP has been considered
[50], [53], [54]. Perturb and Observe (PAO), Hill Climbing (HC), and
incremental conductance (IncCond) are the perturbation MPPT
techniques. They are invariably used in PV systems.

2.1.6.1. Hill climbing / perturb and observe. HC perturbs the duty
ratio of a DC-DC converter which causes changes in the PV current
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Fig. 6. Block Diagram of multistage PV water pumping system.

and voltage [50]. It is given by eq. (4),

Dutyratioye(n—1)+6VP(n) > P(n—1)
Dutyratioy,;(n—1)P(n) = P(n—1) 4)
Dutyratio,;(n—1)—6VP(n) < P(n—1)

Dutyratioes(n) =

In the PAO MPPT technique, the operating voltage of the PV
array is perturbed as given in eq. (5) when voltage mode control of
a DC-DC converter is employed.

Vier(n—=1)+6VP(n) > P(n—1)
Vref(n*‘l)P(n)=P(n*1) (5)
Viep(n—1)—6VP(n) < P(n—1)

Vref(n) =

Thus, when the MPP is tracked, HC and PAO methods utilize
different ways to realize the same fundamental concept. Both
methods can fail for sudden variation of insolation [11], [12].

2.1.6.2. Incremental conductance. The incremental conductance
method is based on the fact that the derivative of the PV output
power with respect to the PV voltage in V - P characteristics of the
PV array is zero at the MPP, positive to the left of the MPP, and
negative to the right as given by eq. (6),

v _ 0atMPP
48 > 0 left of MPP (6)
df < 0 right of MPP

When instantaneous power is differentiated with respect to
voltage,

dP d(VI) dal _ Al

av=av ~"Vav="Vay @
The relation between incremental and instantaneous conductance
at the MPP is given by,

&L — I at MPP
AL > — T left of MPP (8)

Al < — [ right of MPP

The direction of the required change in the control variable so
as to move the PV voltage toward the MPP is determined by
comparing the instantaneous conductance to the incremental
conductance and is given by,

Vieg(n—1)+6VAL > -,
Vig(—=1y = —y ©)
Vig(n—1)—6VAL < —{,

Vref (n) =

This algorithm exhibits comparatively good results for sudden
variations of atmospheric conditions [53], [54]. It also introduces
smaller oscillations around the MPP than the PAO method. How-
ever, its implementation is not simple as compared to the PAO
method.
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Table 1
Multi criterion algorithm technique.

Measurement Sign State of the PV array
dpP dv dl

<0 <0 <0 — Insolation decrease
<0 <0 >0 - Current source

<0 >0 <0 + Voltage source

>0 <0 >0 + Voltage source

>0 >0 <0 - current source

>0 >0 <0 + Insolation increase
=0 0 MPP

Fe(n)=Fe(n-1)+sign x fe

3. Induction motor water pump

Literature review has been conducted on multi and single stage
PV water pumping systems. They are presented as below,

3.1. Multi stage PV water pumping system

The multistage water pumping system comprises of a PV array,
a DC-DC converter, a DC-AC inverter, and an induction motor
coupled to a pump as given in Fig. 6 [60-66]. The induction motor
based water pumping systems have been investigated, and con-
tinuously improved in terms of tracking of solar power, as well as,
performance and efficiency of the drive.

Contrary to the DC motor water pumping systems, an AC motor
can‘t be directly connected to the PV source. In the first stage,
a DC-DC converter is used to track the peak power point using any
one of the algorithms discussed above, and then a DC-AC inverter
is used to convert DC voltage in to variable voltage / variable
frequency power source. When field oriented control (FOC)
technique is considered for controlling an induction motor drive
[60], the optimum torque and flux producing components are
determined using eq. (10) to eq. (14) operate the system at
optimum power point.

imr = fr(@m) (10)
T% . =Pn/om 11
o5 = T/ (ke ) (12)
i =it +op(it,) (13)
wg =T/ (zriyy, ) (14)

The vector rotator is calculated by adding the slip frequency to
either the measured or the estimated mechanical speed of the
motor. The current controlled PWM is employed to switch the
voltage source inverter to generate a variable voltage | variable
frequency power source. This is called multi stage water pumping

system. It has been continuously developed and is based on how
the optimum power point determined by using a DC-DC converter
is used to determine the three control loops, namely, speed,
torque, and flux control loops parameters [61-65]. The indirect
FOC and direct torque control (DTC) with a virtual speed sensor
can also be implemented to improve the performance [67]. The
induction motor drive system performance has been improved by
varying the frequency with respect to the determined optimum
power. A variable frequency based drive also has been discussed
for a water pumping system, in which variable frequency based
operation has proved to be a highly efficient technique [68]. In this
system, once the optimum power is determined, the frequency at
which the drive is operated can be calculated for parabolic and
linear loads respectively as,

fs = \/3 pm/pmn(fsn) (15)
fs = \/2 pm/pmn(fsn/f) (16)

These equations are computationally complex to determine
using low cost microcontrollers. Moreover, the frequency is slowly
ramped up / down according to the calculated values unlike the
case of FOC or DTC which exhibit better transient responses. This
leads to the emergence of single stage PV water pumping systems.
In this system, frequency is slowly ramped up / down until the
power consumed by water pump matches the optimum power of
the PV array using MPPT algorithms considering frequency as the
perturbation parameter.

3.2. Single stage PV water pumping system

A single stage water pumping system is shown in Fig. 7. This is
a simple, low cost and an efficient architecture for a PV water
pump with minimized losses, and reduced maintenance. In this
system, a DC-DC converter is not required, since a DC-AC inverter
with a tracking algorithm performs the same task, in addition to
generating a variable voltage / variable frequency power supply in
order to feed the induction motor [69-72].

This system requires a voltage and a current sensor for both the
operations of controlling the drive and MPPT, since any change in
the load impedance is reflected as a change in voltage and current
of the PV array. When the motor is not operated, the DC link
voltage is equal to the open circuit voltage (V,.) of the PV array. In
case of an overloaded or short circuit condition, the maximum
current is equal to the short circuit current (Is.) of the PV array.
For a given PV current, increased slip decreases the load impe-
dance which in turn increases rotor current and decreases
magnetizing current.

Therefore, the tracking of solar power is directly related to the
utilization of power or improvement in the active component of
the induction motor. A single stage PV water pumping system with
a six step mode of switching has been reported in the literature.
In this system, the simple PAO MPPT technique based on fre-
quency perturbation is presented. This PAO technique is confused
during starting of the motor and tracking due to machine
dynamics [69]. The multi criterion algorithm (MCA) method which
is derived from an incremental conductance method is suited for
rapid variations of insolation. The perturbation step size is varied
based on changes in voltage. However, the changes in voltage are
not large for the changes in insolation [70]. The standard fre-
quency drives can also be used with single stage water pumping
system [71]. In such systems, the six element circuit which
consists of two diode, two capacitor, and two resistors is proposed.
The transient across the PV array varies the frequency setting of
the variable frequency drive [72].

The MPPT techniques based on frequency perturbation are
appropriate for single stage PV water pump drive systems. In a
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single stage PV water pump drive system, the speed is ramped up
or down by perturbing the frequency in a positive or a negative
direction based on changes in voltage, current, and power to
approach the MPP. The constant voltage control, PAO, and incre-
mental conductance or multi criterion algorithm are the important
MPPT techniques for single stage PV water pump systems. These
techniques are reproduced in the following sections with respect
to frequency perturbation [69], [70].

3.2.1. Constant voltage control

In solar stand alone water pump system, the command fre-
quency is increased when the PV voltage is higher than the
reference voltage. Otherwise, the command frequency is
decreased as given in eq. (17). This is the most stable technique
among all MPPTs. However, this method can‘t be applied sepa-
rately in the PV system [70].

Fe(n—1)+8fV(n) > Vo

Fen—1)V(n) =V, (17)
Fe(n—1)=8fV(n) <V,

Fe(n) =

3.2.2. Perturb and observe

The PAO method is popular due to its ease of implementation.
It tracks well when the insolation doesn‘t change rapidly [69].
Under fast variations of insolation, this method may regulate the
speed in the wrong direction. When this technique is implemen-
ted, logic has to be incorporated to differentiate the peak during
starting of the motor from the actual MPP, since this method
behaves as if MPP has been identified during the starting of the
motor. This technique is represented as,

Fe(n—1)+68fdP >0
Fe(n—1)dP=0 (18)
Fe(n—1)—6fdP <0

Fe(n)=

3.2.3. Incremental conductance

The incremental conductance technique explained by consider-
ing the reference voltage as a perturbation parameter can be
modified with respect to frequency perturbation, and it is given by
[70],

Fe(n—1)+6f{+4L <0
Fe(n—1){+4=0 (19)
Fe(n—1)—6f3+40>0

Fe(m) =

3.2.4. Multi criterion algorithm

In general, an MPPT controller utilizing IncCond algorithm can
operate the PV system at the MPP with an improved transient and
steady state performance. When a fixed point microcontroller is
used to implement this technique, analog-to-digital converter data
of voltage and current are represented by same data format. This
causes computational difficulties. Hence, the direction of the
perturbation is misdirected when the criterion I/V+AI/AVis
calculated because of the absolute value smaller than 1, it is
considered as zero.

Moreover, when the solar insolation varies quickly resulting the
status of change in voltage and current asAl>0, andAV > 0.
According to this condition, the frequency is decreased causing
degradation in performance of the drive system. Therefore, from
eq. (19), it is possible to remove the divide and multiply operations
by simply verifying the sign of change in voltage, current, and
power as shown in Table 1. This is called multi criterion algorithm
[70].

4. MPPT algorithms for partially shaded conditions

The algorithms which determine MPP under partially shaded
condition are discussed for power supply and grid interface
applications [73-79]. In these systems, a DC-DC converter is
controlled comparatively at lesser sampling period to sweep the
PV voltage range. When it is found that a current peak is lower
than the peak occurs during sweeping, the corresponding peak is
latched as current operating point. The MCA, PAO, and IncCond
algorithms are effective only for uniform insolation. Patel and
Agarwal [80] have studied the [-V and P-V characteristics of large
scale PV systems under partially shaded conditions (PSC) using a
MATLAB | SIMULINK® model. Two-stage tracking techniques have
been proposed to identify the Global MPP (GMPP) amongst the
multiple MPPs under partially shaded conditions (PSC) [73], [74].
In the first stage, open-circuit voltage (V,.) and short-circuit
current (Isc) are measured or a simple linear function [81] is used
to move closer to the vicinity of Global MPP followed by the use of
any one perturbation MPPT method in the second stage to reach
the actual MPP.

5. Microcontroller based implementation

Microcontroller based implementations are reviewed for resi-
dential or power supply applications to understand the issues
involved when a microcontroller based system is developed for a
PV water pumping system. A microcontroller based control system
is described for a residential PV power conditioning system [82-87].
The control functions are implemented using Intel 8751 an 8- bit
microcontroller. The PAO MPPT controller based on voltage pertur-
bation is presented for the power supply applications. It uses the
buck type DC-DC converter in addition to the battery charger [88].
For AC powered appliances such as fluorescent lamps, fans, etcetera,
PIC 16F873 is used to implement the control functions [89].
With the digital signal processor based implementation, the MPPT
can be reached rapidly and accurately by increasing the sampling
frequency in DC-DC converter system [83]. A two loop control
technique implementation is discussed, but is reported to be
a complex method [90]. The algorithm for partial shaded condition
of insolation is considered and is implemented using a microcon-
troller [80].

6. PV Emulators for testing MPPT algorithms

The MPPT algorithms are tested under controlled conditions for
their realization and for determination of their efficiency. The
reported references discussed for grid system, power supply
applications, and stand alone applications are reviewed to under-
stand the testing and implementation procedure for a single stage
PV water pumping system. The Agilent Technologies’ Solar Array
Simulator is usually used to test the algorithms under controlled
conditions [39], [91]. But, they are expensive equipments and are
only available up to a few hundred watts of power. Easwara-
khanthan et al. [92] proposed a solar array simulator based on
Commodore CBM-4016 microcomputer with an Adret DC voltage
generator, a Keithley multimeter, and a power amplifier for testing
up to a capacity of 750 W. The capacity expansion depends on the
availability of suitable power amplifiers. A simple and low cost
module based on the maximum power transfer theorem can be
used to test the algorithms for power supply application [93]. An
operational amplifier and transistor combination can also be used
as a low cost solar emulator to evaluate MPPT algorithms [94].
A tungsten halogen lamp with a controlled power supply is used to
test the algorithms based on switching frequency modulation [95].
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7. Future scope

In photovoltaic water pumping system, the common objective
is to decrease cost [ watt [96-98]. The single stage water pumping
system employing induction motor is worth to further investigate.
In this system, the MPPT is achieved utilizing frequency dependent
load impedance characteristics of induction motor. This results in
selection of minimum MPPT sampling time equal to motor-pump
time constant. The control system for improving the efficiency,
performance of drives and peak power tracking process can be
further examined under the condition of non uniform insolation,
reduced components and to decrease the rotor slip losses of
induction motor.

8. Conclusions

It is understood that the advancement in PV water pumping
system leads to rural economy development. An extensive litera-
ture review has shown the background of PV based DC and AC
motor based water pumping systems. The presented literature
review thus can be used for development of real-time microcon-
troller based DC/AC PV water pumping drive systems and its
validation for change in insolation and temperature. The tracking
of MPP under uniform and non-uniform insolation is also
presented.
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