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� Guidelines for implementing LMDI decomposition approach are provided.

� Eight LMDI decomposition models are summarized and compared.
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� The latest developments of index decomposition analysis are briefly reviewed.
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a b s t r a c t

Since it was first used by researchers to analyze industrial electricity consumption in the early 1980s, index
decomposition analysis (IDA) has been widely adopted in energy and emission studies. Lately its use as the
analytical component of accounting frameworks for tracking economy-wide energy efficiency trends has
attracted considerable attention and interest among policy makers. The last comprehensive literature review
of IDA was reported in 2000 which is some years back. After giving an update and presenting the key trends
in the last 15 years, this study focuses on the implementation issues of the logarithmic mean Divisia index
(LMDI) decomposition methods in view of their dominance in IDA in recent years. Eight LMDI models are
presented and their origin, decomposition formulae, and strengths and weaknesses are summarized.
Guidelines on the choice among these models are provided to assist users in implementation.

& 2015 Elsevier Ltd. All rights reserved.
1. Index decomposition analysis

Index decomposition analysis (IDA) was first used by researchers
to study electricity consumption trends in industry in the early
1980s. The objective was to disentangle the impact on electricity
consumption of changes in industrial output structure from that in
industrial sector energy intensities. Since then there has been tre-
mendous growth in the number of publications in this research area.
Several literature reviews have been reported. Ang and Zhang (2000)
provide a comprehensive review which covers both the methodo-
logical and application fronts. Other and more recent reviews focus
on specific sub-areas. For instance, Liu and Ang (2007) deal with
industrial energy analysis, while Xu and Ang (2013) concentrate on
energy-related CO2 emissions.

The literature review by Ang and Zhang (2000) lists 87 journal
articles up to 1999 that can be appropriately classified under IDA.
It is still the most comprehensive review of IDA to date. Our latest
count shows that the number has increased to 559 through 2014.1
ritten in English and appear
publication statistics given in
d on the 559 titles that have
The breakdown by time period is as follows: 55 prior to 1995, 125
from 1995 to 2004, and 379 from 2005 to 2014 (all years inclusive).
The growth has been exponential, especially in the last ten years.
In addition, there have been many reports with a strong policy
focus released by research institutes, national agencies, and in-
ternational organizations. The evidence that IDA is a useful tool in
energy analysis and decision making, some 30 years after it was
introduced, is strong and growing.

With the increasing maturity of the IDA methodology and
changes in the global energy scene, several developments in IDA
application can be observed over time. Prior to 1990, the main
focus of researchers was on studying the relative impacts of
changes in the aggregate level of a group of industrial activities,
activity structure of the group, and activity energy intensities on
energy consumption. Studies on other energy consuming sec-
tors, namely transportation, residential, and service, started to
emerge after the early 1990s. At the same time, after 1990, rising
concerns about global warming have led to increased use of IDA
in energy-related CO2 emission studies. The growth in CO2

emission studies has been very strong. Indeed since 2000 there
have been more IDA journal articles dealing with emissions than
energy. In the past ten years, application of IDA has also gone
beyond the traditional areas of energy and emissions. New areas
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5 Slightly less than a third of the publications from 2010 to 2014 use a variety of
other IDA methods. They include the AMDI, Laspeyres index, Fisher ideal index,
Shapley/Sun, generalized Fisher index, and some other ad hoc methods. When
decomposition analysis is for an aggregate energy intensity indicator and involves
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reported include water use, material and non-energy resource
requirements, food production, pollutant emissions, and toxic
chemical management. See, for example, Fujii and Managi
(2013), Kastnera et al. (2012), Oladosu et al. (2011), Pothen and
Schymura (2015), and Zhao and Chen (2014). Traditionally IDA
has been used to analyze past developments, i.e. retrospective
analysis of changes of an aggregate. Lately there have been a
growing number of studies that deal with “prospective analy-
sis”. The three main applications are as follows. The first is
making future forecasts on the basis of the decomposed effects
obtained in retrospective analysis (Lescaroux, 2013; O'Mahony
et al., 2013). The second is unraveling projected energy savings
or reduced emissions for a future year by effect through de-
composing the differences between the projected energy con-
sumption or emission levels for the year for two different sce-
narios, where one of the scenarios is often the business-as-usual
case (Gambhir et al., in press; Kesicki, 2013; Smit et al., 2014).
The third is harmonizing and comparing projection results
across different models and scenarios through quantifying the
underlying drivers or effects which provide a common basis for
comparisons (Föster et al., 2013; Hasanbeigi et al., 2014; Park
et al., 2013).

Another important development is the use of IDA as the
analytical component of the accounting framework to track
economy-wide energy efficiency trends. This began in the 1990s
following the initiatives undertaken by a number of national and
international organizations, including the International Energy
Agency (1997) and the Office of Energy Efficiency (2013) of
Canada.2 Since then, national-level studies have been undertaken
in a number of other countries, including Australia, New Zealand
and the United States (Ang et al., 2010). More recently, IDA was
adopted by the International Energy Agency in a special focus on
energy efficiency in the World Energy Outlook 2012 (Interna-
tional Energy Agency, 2012) and Energy Efficiency Market Report
2014 (International Energy Agency, 2014), as well as by the Eur-
opean Union in the Industrial Competitiveness Study 2012 (Eur-
opean Commission, 2012). IDA is presently being used by the
World Bank and collaboration agencies as the tool for tracking
progresses made in energy efficiency globally in the Global
Tracking Framework of Sustainable Energy for All (SE4ALL,
2013).3 The latest SE4ALL global tracking framework report can
be found in International Energy Agency and the World Bank
(2015).

The term “index decomposition analysis” was coined in Ang
and Zhang (2000). It has since been widely accepted to represent
what had formerly been known as “decomposition analysis” or
“factorization analysis”. The study points out that adding the
word “index” before “decomposition analysis” is to differentiate
this line of work from that of structural decomposition analysis
(SDA) which is based on input–output analysis.4 The basic prin-
ciple of IDA has strong linkages with index number problems in
statistics and economics. The underlying concept was largely
formalized in the 1980s. Refinement and extensions to the
technique have been regularly made by researchers. Examples
are the search for methods that produce decomposition results
without leaving a residual term, catering to cases where de-
composition involves many factors or effects, spatial decom-
position analysis, integrating physical and economic activity
2 Office of Energy Efficiency (2013) is the 16th edition reporting on the national
energy efficiency studies initiative undertaken by Canada that started in the 1990s.

3 SE4ALL is a global initiative led by the Secretary-General of the United Na-
tions to achieve universal energy access, improve energy efficiency, and increase
the use of renewable energy.

4 For a study on the similarities and differences between IDA and SDA, see
Hoekstra and van den Bergh (2003).
indicators in a decomposition exercise, ensuring consistency in
sector aggregation when the data set has more than one level of
sector aggregation, and attribution analysis of the estimated
impacts by sub-sector or sub-category.

With such refinement and the need to cater to a wider range of
application areas and problems, there has also been convergence
with regard to IDA methods used by researchers. Prior to 1990,
decomposition analysis was conducted largely based on the con-
cept of the Laspeyres index. In the 1990s, a gradual shift towards
the Divisia index was observed, or more specifically towards the
method proposed by Boyd et al. (1988) which has later been re-
ferred to as the arithmetic mean Divisia index (AMDI) method.
Since 2000, the most popular IDA approach has been the loga-
rithmic mean Divisia index (LMDI) methods. The LMDI decom-
position methods were adopted in two-thirds of the 254 IDA
journal papers published over the five-year period from 2010 to
2014. On an annual basis, the share of papers using LMDI has been
rising, from 50 percent in 2010 to 76 percent in 2014. The trend
indicates that LMDI is likely to further increase its dominance over
time.5
2. The LMDI decomposition approach

The LMDI decomposition approach comprises two different
methods, LMDI-I and LMDI-II. The difference between them lies in
the weights formulae used. In each case several decomposition
models have been reported. The first model was proposed in 1997
and the term “LMDI” was introduced a year later in 1998. The two
methods, LMDI-I and LMDI-II, were only formally introduced in
2001. The popularity of the LMDI approach stems from a number
of desirable properties it possesses (Ang, 2004) which will be
presented in later sections. A practical guide to LMDI-I is reported
in Ang (2005). With LMDI now firmly established as the preferred
approach in IDA, it is timely to conduct stocktaking by providing a
precise and definitive documentation of the various LMDI models,
including their origin, basic formulae, and key features. This will
help potential users to make sensible choices and decisions when
implementing it in their studies.

For both LMDI-I and LMDI-II, a decomposition analysis problem
can be formulated either additively or multiplicatively. In additive
decomposition analysis, the arithmetic (or difference) change of an
aggregate indicator such as total energy consumption is decom-
posed. The aggregate change and decomposition results are given
in a physical unit. In multiplicative decomposition analysis the
ratio change of an aggregate indicator is decomposed. In this case,
the aggregate change and decomposition results are expressed in
indexes.

Furthermore, other than a quantity indicator such as energy
consumption, the aggregate indicator whose change is to be de-
composed can be an intensity indicator, such as energy use per
value-added (for industry), per passenger-kilometer (for passenger
transportation), or per unit floor space (for the residential sector).
only two factors to give structure and intensity effects, greater variations in the
choice of IDA methods among studies are observed. The decomposition problem is
similar to separating national income and product accounts to prices and quantity
effects where a large variety of index numbers can be applied. For studies that
involve more than two factors, which are the norm in energy-related emission IDA
studies, some of these indexes, such as the Fisher ideal index, cannot be easily
applied as the formulae become fairly complex. In such cases, LMDI methods tend
to dominate since their formulae take the same form irrespective of the number of
factors and are therefore easy to implement (see Section 3.3).



6 The formulae for Method 5 are given by Eqs. (23) and (24) in Ang and Zhang
(2000).

7 The corresponding formulae are given by Eqs. (21) and (22) in Ang and Zhang
(2000).
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When a quantity indicator is used, the simplest and standard IDA
identity has three factors, which after a decomposition exercise
lead to the well-known activity, structure, and intensity effects.
With an intensity indicator, the simplest IDA identity has two
factors, which lead to only the structure and intensity effects.
These two types of aggregate indicators require different treat-
ments in IDA.

In short, the LMDI approach involves variations in three dif-
ferent dimensions: by method (LMDI-I versus LMDI-II), by de-
composition procedure (additive versus multiplication decom-
position), and by aggregate indicator (quantity indicator versus
intensity indicator). This leads to eight LMDI decomposition
models. Users must decide which model to adopt before em-
barking on a decomposition study. The LMDI practical guide in Ang
(2005) deals only with LMDI-I and quantity indicator for both
additive and multiplicative decomposition analysis. It does not
cover LMDI-II and intensity indicator.

Consider a study where changes in industrial energy con-
sumption and aggregate energy intensity are to be decomposed.
The sub-category of the aggregate is industrial sector. When an
energy consumption change is to be decomposed, we begin with
the following IDA identity:

E E Q
Q
Q

E
E

QS I ,
1i

i
i

i i

i
i i∑ ∑ ∑= = =

( )

where E is the total energy consumption in industry, Q ( Qi i=∑ ) is
the total industrial activity level, and Si (¼Q Q/i ) and Ii (¼E Q/i i) are
respectively the activity share and energy intensity of sector i. In
additive and multiplicative decomposition analyses, we have, re-
spectively,
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where subscripts act, str, and int denote the effects associated with
overall activity level, activity structure, and sectoral energy in-
tensity, respectively.

When an aggregate energy intensity change is to be decom-
posed, we begin with the following IDA identity:
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In additive and multiplicative decomposition analyses, we
have, respectively,

V V V V V , 5tot
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T

str int
0= = ( )

The formulae for calculating the effects in Eqs. (2), (3), (5), and
(6) in the eight LMDI models are summarized in Table 1. For easy
reference, they are named Model 1–Model 8. These models and
formulae are not new. They have actually been reported in the
literature but scatter in different sources. In Table 1, the original
source where each of the models was first introduced in the lit-
erature is given.

Model 8 is the first LMDI model introduced by researchers.
Proposed by Ang and Choi (1997), it is also the first IDA method
that does not leave a residual in the decomposition results. This
model involves the decomposition of energy intensity change.
Using the concept of a logarithmic mean function as weights for
aggregation as in Ang and Choi (1997), Ang et al. (1998) proposed
Model 1 to decompose energy quantity change and introduced the
term “LMDI” for the first time. The literature review by Ang and
Zhang (2000) introduced Model 5, the additive LMDI-I method for
decomposing energy intensity change.6 No distinction was made
between LMDI-I and LMDI-II then, and the multiplicative LMDI
method given in Ang and Zhang (2000) is actually the same as that
later known as LMDI-II for decomposing energy intensity change,
i.e. Model 8 in Table 1.7

Ang and Liu (2001) proposed Model 2 and pointed out that the
model is perfect in decomposition and consistent in aggregation.
They also introduced the terms “LMDI-I” and “LMDI-II” and dif-
ferentiate the two methods formally for the first time. Ang et al.
(2003) consolidated perfect decomposition IDA methods and
provided a set of general formulae for LMDI-II applicable to the
decomposition of both energy quantity and energy intensity in-
dicators, which leads to Model 3, Model 4, and Model 7. Choi and
Ang (2003) introduced the formulae for Model 6 and Model 5. Both
apply LMDI-I to decompose energy intensity changes, one multi-
plicatively and the other additively.
3. Comparisons of the eight LMDI models

From Table 1 the researcher has several choices to make when
using the LMDI approach. Specifically, these choices are between
using a quantity and intensity indicator, between additive and
multiplicative analysis, and between LMDI-I and LMDI-II. For
clarity in the discussions that follow, a simple numerical example
is presented. The hypothetical data in Table 2 are taken from Ang
(2004). Energy consumption in industry is analyzed and for sim-
plicity only two industrial sectors are assumed. From Year 0 to Year
T, total energy consumption increased from 50 to 96, giving an
arithmetic change of 46 and a relative change of 1.92. The ag-
gregate energy intensity increased from 1.0 to 1.2, giving an ar-
ithmetic change of 0.2 and a ratio change of 1.2. Application of the
eight LMDI models leads to the decomposition results shown in
Table 3. Since all the models are prefect in decomposition, these
results do not contain a residual term. In the discussions that
follow, we shall use application to energy consumption as an il-
lustration. The conclusions remain valid when extended to other
applications areas, such as energy-related CO2 emissions.

3.1. Quantity versus intensity indicator

A quantity indicator measures the absolute level of energy
consumption, while an intensity indicator has an “energy effi-
ciency” connotation. In decomposing a change in the former, an
activity effect is separately specified and its impact on energy
consumption estimated, which is not the case when an intensity
indicator is used. In the literature, there was equal preference for
the two aggregate indicators prior to 2005. Thereafter the number
of publications using quantity indicator has outnumbered that
using intensity indicator by two to one. The choice between
quantity indicator and intensity indicator may be independent of
the choice of decomposition method. In some cases the context of
the study will dictate which type of indicator should be preferred.
For example, studies that deal with changes in absolute CO2

emissions in a country may prefer a quantity indicator, while that
focus on “energy productivity” may prefer an intensity indicator.
For cases where there is no clear preference of one indicator over
the other, quantity indicators may be preferred for the following
reasons. First, if additive decomposition analysis is to be used,
decomposing an intensity indicator is generally not a good choice.
Decomposing a difference change of an intensity indicator is



Table 1
Formulae for eight LMDI decomposition models.
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somewhat hard to grasp and, because of the measurement unit,
the decomposition results are cumbersome to interpret. Second, in
multiplicative decomposition analysis, the decomposition results
for the effects, i.e. structure and intensity effects, are the same as
(for LMDI-II) or very close to (for LMDI-I) those given by the de-
composition analysis using the corresponding quantity indicator
(see the last two rows Table 3). Since the decomposition of a
change in a quantity indicator generates more results and is re-
latively more informative, i.e. with the additional activity effect
estimate, it may therefore be preferred. Partly because of the
above reasons and partly because of the shift in application areas,
the number of studies using quantity indicator has outnumbered
that using intensity indicator since 2005.

3.2. Additive versus multiplicative decomposition analysis

Prior to 2005, the proportion of journal publications using
additive decomposition analysis was 61 percent, compared to 39
percent using the multiplicative counterpart. The gap has since
widened, and the respective shares were 71 percent and 29
percent for publications appearing from 2005 through 2014. From
the literature one can often see that the choice between the two
procedures by researchers is fairly arbitrary. In practice, a differ-
ence that one will encounter is in result presentation, since the
decomposition results are given in a physical unit in the additive
case while in indexes in the multiplicative case. A specific con-
sideration is therefore about the data used, whether they are time-
series data or data for selected benchmark years only. Both ad-
ditive and multiplicative are applicable in the former, while ad-
ditive is more convenient in the latter. A distinct advantage of the
LMDI approach is that the results of additive decomposition ana-
lysis and those of multiplicative decomposition analysis are closely
linked. With reference to Table 1 and for energy consumption
decomposition, we have:
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For energy intensity decomposition, we have:



Table 3
Decomposition results based on the models in Table 1 and data in Table 2.

Decomposition of aggregate energy consumption Decomposition of aggregate energy intensity

LMDI-I LMDI-II LMDI-I LMDI-II

Additive Model 1 Model 3 Model 5 Model 7
EtotΔ 46.000 46.000 VtotΔ 0.2000 0.2000

EactΔ 32.385 33.143 – – –

EstrΔ 38.285 37.941 VstrΔ 0.5819 0.5902

EintΔ �24.670 �25.084 VintΔ �0.3819 �0.3902
Multiplicative Model 2 Model 4 Model 6 Model 8

Dtot 1.9200 1.9200 Utot 1.2000 1.2000

Dact 1.5829 1.6000 – – –

Dstr 1.7210 1.7126 Ustr 1.6997 1.7126

Dint 0.7048 0.7007 Uint 0.7060 0.7007

Table 2
An illustrative example (arbitrary units).

Year 0 Year T

E0 Y0 S0 I0 ET YT ST IT

Sector 1 30 10 0.2 3.0 80 40 0.5 2.0
Sector 2 20 40 0.8 0.5 16 40 0.5 0.4
Industry 50 50 1.0 1.0 96 80 1.0 1.2
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The above relationships hold for both LMDI-I and LMDI-II.8 The
implication is that the choice between additive and multiplicative
decomposition analysis when the LMDI approach is used is in-
consequential since the results given by any one of the procedures
can be readily converted to those of the other. Leaving this prop-
erty aside and in general, the additive decomposition analysis
procedure is more suited when used in conjunction with a quan-
tity indicator, while the multiplicative procedure is more suited
when used in conjunction with an intensity indicator.

3.3. LMDI-I versus LMDI-II

Both LMDI-I and LMDI-II share a number of desirable proper-
ties as an IDA method. They include satisfying the factor reversal
test and the time reversal test in index number problems. They are
easy to formulate and apply, and are zero-value and negative-va-
lue robust. Irrespective of the number of factors in the IDA identity,
the decomposition formulae take the same forms as those shown
in Table 1 for each model. The linkage between the results given
by additive and multiplicative decomposition analysis procedures
is yet another attractive feature of both methods. From the de-
composition results in Table 3 and those presented in other stu-
dies, such as Choi and Ang (2012), it is known that once a choice
has been made on the aggregate indicator (quantity or intensity)
and the decomposition analysis procedure (additive or multi-
plicative), the results given by LMDI-I and LMDI-II are actually very
similar. As such, in general application, there is no strong pre-
ference for one method over the other. In the literature, LMDI-I has
been far more widely adopted than LMDI-II partly because of its
simpler formulae. It is also the method recommended in Ang
(2004) and Ang (2005).
8 The relationships can be shown analytically based on the formulae in Table 1
or the numerical example in Table 3. The linkage for multiplicative LMDI-I with
proof is given in Ang (2004).
Yet there are some subtle differences between LMDI-I and
LMDI-II that may dictate a user’s choice in some specific applica-
tions. LMDI-I has two additional desirable properties: consistent in
aggregation (Ang and Liu, 2001) and perfect in decomposition at
the subcategory level (Ang et al., 2009).9 These are properties that
LMDI-II does not possess. If any of or both these properties are
deemed important in a specific application, such as in multi-level
decomposition analysis where multi-level aggregation is per-
formed and decomposition results at sub-category level are of
interest, LMDI-I will be preferred. On the other hand, in the case of
LMDI-II, the weights in the formulae in Model (4) and Model
(8) summed to unity (Ang and Choi, 1997), a desirable property in
index construction.10 Comparing Model 8 and Model 6, the for-
mulae in the former look “simpler” and more intuitive, i.e. the
terms used to calculate the weights formulae are given in the
quantity shares, and computationally Model 8 is more attractive.
These advantages of LMDI-II over LMDI-I, however, do not apply
when Model 3 is compared to Model 1 or when Model 4 is com-
pared to Model 2.

3.4. Guidelines for implementation

From the foregoing and taking into account theoretical foun-
dation and ease of application, the following general guidelines on
the implementation of the LMDI approach may be proposed. They
are taken as general and as such may not be applicable when the
user has some specific preference or considerations with good
reasons. First, in additive decomposition analysis where the ag-
gregate is a quantity indicator, Model 1 is the preferred model (and
is superior to Model 3). Second, in multiplicative decomposition
analysis where the aggregate is an intensity indicator, Model 8 is
the preferred model (and is superior to Model 6). Third, in mul-
tiplicative decomposition analysis where the aggregate is a
quantity indicator, both Model 2 and Model 4 may be adopted.
9 These properties apply to both Model 1 and Model 2.
10 In LMDI-I, the sum of weights in the formulae in Model (2) and Model (6) is

not exactly unity, although it is generally very close to unity (Choi and Ang, 2012).
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However, Model 2 has an edge over Model 4 due to its desirable
properties of consistent in aggregation and perfect in decom-
position at the subcategory level, simpler formulae, and linkage
with Model 1. Finally, additive decomposition analysis where the
aggregate is an intensity indicator is generally not recommended
and as such low priority may be given to Model (5) and Model (7).
In short, the top choices are Model 1 and Model 8 depending on
whether the aggregate studied is a quantity or intensity
indicator.11
4. Conclusion

This study provides an update to IDA and a brief review of LMDI
decomposition analysis. Several key trends observed since the
comprehensive literature review reported in Ang and Zhang
(2000) are presented. With sustained interest among researchers
and policy makers in the LMDI decomposition approach, an ac-
count is given of the origin of various LMDI decomposition models
and the terminology now widely used in the research area. Eight
LMDI models are presented with their basic formulae summarized.
Comparisons are made among the models and guidelines for po-
tential users are developed on model selection. Recent develop-
ments show that tracking of economy-wide energy efficiency
trends is an area where the LMDI decomposition approach will
increasingly be applied. Furthermore, the approach is being
adopted in a growing number of non-traditional areas, including
in conjunction with other modeling tools in an innovative way.
While the availability of quality data is a requirement for produ-
cing good empirical work, this study serves to provide a strong
foundation for the implementation of IDA and the LMDI decom-
position approach.
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