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ABSTRACT 

Necessary structural criteria are obtained for linear multivariable regulators which retain 
loop stability and output regulation in the presence of small perturbations, of specified types, 
in system parameters. It is shown that structural stability thus defined requires feedback of 
the regulated variable, together with a suitably reduplicated model, internal to the feedback 
loop, of the dynamic structure of the exogenous reference and disturbance signals which the 
regulator is required to process. Necessity of these structural features constitutes the 'internal 
model principle'. 

1. Introduction. The problem of synthesizing linear multivariable regulators 
possessing structural stability with respect to small perturbations in system 
parameters  was considered in [1, Chapter  8]. The synthesis exploited feedback 
together with a suitably reduplicated model, internal to the feedback loop, of the 
dynamic structure of the exogenous reference and disturbance signals which the 
system was required to process. In this paper  it is shown that such structure of 
the regulator is actually necessary. This general result, which no doubt  is of 
broader  validity than is proved here, we call the internal model principle. 

We remark that plausibility arguments in support of the 'internal model '  idea 
have been presented by Kelley [2]. In addition Davison [3] has discussed a 
problem similar to that addressed in this paper. The present treatment is quite 
different in method of approach. 

The system under consideration is modeled as follows. The plant is described 
by the linear time-invariant vector differential equation 

xl = A lXl "~ A3x 2 + BlU, (1) 

where x 1 is the state vector of the plant and u is the vector of control inputs. The 
vector x 2 satisfies the equation 

"~2 ~--" A 2 X 2  (2) 

and represents reference a n d / o r  disturbance signals which the regulator is to be 
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designed to process. The vector z to be regulated (e.g. tracking errors and/or  
deviations from set-point values) is given by 

Z = D l X l + D 2 x  2. (3) 

The vector y of outputs measurable by the controller is given by 

y -'~ C lX  1 "t" C2X 2. (4) 

Typically the vector A 3 x  2 in (1) represents plant disturbances, and the vector 
D=x 2 in (3) represents reference signals which the controlled output vector 
- D l X  1 is required to track. 

The control action is generated by a linear time-invariant compensator with 
input y (.) and output u(.), according to 

S~ ~= A~x~ + ~ cy 

u=F~x~+ Fy. 

Here x~ is the state vector of the compensator. 
The vectors x l , x2 ,  u , z , y , x  c belong to fixed real linear spaces 

(5a) 

(5b) 

(6) 

of finite dimension nl, n 2 , m , q , p , n  ~ respectively. The time-invariant linear maps 
in (1) through (5) are defined on the appropriate spaces as follows: 

i=1 ,2  

A3: %2-+%1, BI: ~L--~ %~, A~: %~---~%~, 

Be: ~ ~ % c ,  V~ : %c---, %, F: ~ % .  

The signal flow graph of the system is shown in Fig. 1. ( s I - A  1 is written 
s - A 1, etc.). 

From Fig. 1 it is seen that the plant and compensator together form a loop. 
The state space of the loop, %L, is defined to be the external direct sum of %1 
and %c : 

%L = %1 ~ %c" 

The state vector of the loop will be written 

[x,] 
X L = ~ 9~ L . 

Xc 

Then, by combining (1), (4) and (5), we see that the loop is described by 

(7) 

SoL = ALxL + BLx2, (8) 
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Figure 1. Overall system signal flow graph. 

Z 

where 

In (8) A L is a map %L ~ %L which can be written as the matrix shown in (9) 
because of the convention (7). In addition define D L : %L ~ % by 

so that 
D L = [ D  ~ 0], (10) 

DLX L ~ D I X  1. 

The output to be regulated is thus 

z : DLX z + D2x 2. (11) 

The composite system is now described by (2), (8) and (11); the signal flow 
graph is shown in Fig. 2. 

The purpose of the controller is twofold: to stabilize the loop and regulate 
the output. By loop stability is meant that x L ( t ) ~ O  as t ~ o o  for all xr(O ) with 
x2(0) -- 0. From (8) this is evidently equivalent to stability of A L, that is 

o(AD c c -  = (z Rez <0 ) .  
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Figure 2. Signal flow graph showing loop. 

By output regulation is meant that z(t)~O as t ~ o 0  for all xz.(0 ) and X2(0 ). 
We may assume at the outset that A 2 is totally unstable, that is 

o(A2) c C  + = ( z ~ C : R e z  1>0), (12) 

because any stable exogenous modes can be included in the plant description 
since they affect neither loop stability nor output regulation*. Also we may 
assume that 

[C1, C21 is epic; (13) 

otherwise replace ~ by Im C x + Im C 2. Finally we may assume that 

D 1 is epic (14) 

since clearly a necessary condition for output regulation is Im D 2 c I m  D 1 and 
hence (14) is achieved by setting % = I m  D 1 + I r a  DE----Im D I. Throughout  the 
remainder of the paper (12), (13) and (14) are standing assumptions which will 
not be reiterated in the statements of our results. 
The vector spaces in (6) are assumed to have fixed bases. The maps in (1) to (5) 
then have matrix representations referred to these bases. These matrices will be 
denoted by the same letter as the corresponding maps. The matrix A1 can then 
be regarded as a data point in R N where N = n  2. Similarly (A1,B 0 can be 
regarded as a data point in W v with N =  n12+ n~ m. Let ~ be such a data point in 
R N, and assign to It N its usual topology. To say that the synthesis is structurally 
stable at ~ means that loop stability and output regulation hold everywhere 
throughout some open neighborhood (nbhd) of 0 in R u. If A c is stable and its 
elements are perturbed slightly the resulting matrix is still stable. Thus structural 

*The specific partition C = C- U C+ of the complex plane is not crucial to the development, and 
could be replaced by an arbitrary 'symmetric partition' in the sense of [1], with C- an open subset of 
the complex plane. 
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stability at 19 is equivalent to the conditions: 

(i) A L is stable 
(ii) output regulation holds throughout a nbhd of 19 in II N. 

The main objective of this paper is to determine the necessary controller 
structure so that the resulting synthesis is structurally stable at a given data point. 
The data point in question will depend on the theorem discussed, as the intent is 
partly to establish to what system data the controller may be critically sensitive. 
The data point will not include elements from A2, since it is assumed that a fixed 
class of exogenous signals is to be processed, this class being specified a priori in 
a statement of the design objective. Nor will the data point include C 1, C 2, D 1 or 
D2; the elements in these matrices are assumed fixed either by definitional 
relations or by the precision of the physical sensors and error comparators being 
modeled. 

The principal concepts of readability, the internal model, and feedback are 
introduced in Section 2. That a structurally stable synthesis must incorporate 
these features is proved in the sections which follow. 

Notation. The real and complex fields are denoted respectively by It and £. 
The real part of a complex number is written Re. 

If % is a linear space, d ( % )  is its dimension. While % etc. is defined 
initially over I!, the complexification of % etc. will be denoted by the same 
symbol and introduced freely. If A : % ~ % is a linear map, o(A) is its complex 
spectrum. If B : ~ % ,  I m B  or ~ denotes the image of B and Ker B its 
kernel. The controllable subspace of (A,B) is ( A I ~ ) =  ~5 +A ~3 + . . - +  
A n - l @  where n = d ( % ) .  If CVc ~ then B [ ~  is the restriction of B to cV and 
is a map ~Vo % ; whereas if A ~V c ~V c % then A [ W : ~Vo ~V. Linear space 
isomorphism is denoted by ~ .  

If n > 1 is an integer _n is the set { 1 . . . . .  n}. Definitional equality is written 
: ~ .  

2. Principal Concepts. The compensator is restricted to process only the 
measurable output y. It will be shown that a synthesis can be structurally stable 
only if the compensator has access to the regulated variable z; that is, only if the 
value of y( t )  always determines that of z(t). This motivates the definition: z is 
readable from y if there exists a map Q: ~ ~ ~ such that z = Qy. This is 
equivalent to the condition that [D1,D2] factors through [C v C2], namely 

Ker[ C 1, C2] c Ker[Da, D2]. (15) 

If (15) holds we shall say that the pair ([CI,C2], [D1,D2] ) is readable. 
An alternative way of describing readability is as follows. Suppose (15) holds. 

Then d ( ~  ) >  d(~;) by virtue of (13) and (14), and ~ can be defined according 
to 

% = ~ff @ ~ ,  (16) 
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for  a suitable linear space °2ft. Then  

[C1'C2]=[ EID1 D2E2 ] 
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(17) 

for  some maps  E i : %,. ~ ~ ,  i E 2 .  Def in ing w = E l x  1 + E 2 x  2 we have  

y =  ~ @ ~ .  
z 

The  m a p  (2 is now the na tura l  project ion qt~ @ % --+ %. 
Cor respond ing  to (16) the m a p s  F and  B c can  be wri t ten 

F=[Fw,F~], Bc=[B~,B~,], (18) 

that  is F w = F I ~ f f  , F z = F 1%, etc. W h e n  the representa t ions  (17), (18) are inserted 
in Fig. 1 the result  is as shown in Fig. 3. 
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Figure 3. Synthesis in which z is readable from y. 
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To define the internal model we first recall that the invariant factors (i.f.) of 
a map A : %---) % are the minimal polynomials of the cyclic components in a 
rational canonical decomposition of % relative to A. We say that A incorporates 
an internal model of A 2 if the minimal polynomial (m.p.) of A 2 divides at least 
q = d ( % )  i.f. of A. The internal model is thus a q-fold reduplication in A of the 
maximal cyclic component of A a. 

The internal model can also be described in terms of Jordan decomposition. 
Recall that the Jordan decomposition of % relative to a map A : % ---) % can be 
derived from its rational canonical decomposition by factoring the i.f. of A into 
powers of monomials of the form s - h ,  where )tEa(A). Precisely, for each 
distinct )tEa(A) there exist an integer t(X) (which is unique) and A-invariant 
subspaces %~, i E t(X), such that 

(i) % = ~ @ %~ 
)~Eo(A) iE t(X) 

(ii) A I% ~ is cyclic with m.p. ( s -X)  g(x'i), where k(X,i): = d(%~). There is a 
basis for %~ such that A[%~ is represented by the Jordan matrix 

Jka.)(X): = 

X 1 

X 

1 

X 

m 

: k(X, i) × k(X, i). 

(iii) The m.p. of A is 

where 

1-[ ( s - X )  ~a~ 
Xea(A) 

k(X): =max{ k(X, i ) : i~  t(X) }. 

The polynomials ( s -X)  ~(x'i) are the elementary divisors (e.d.) of A. The %~ are 
the prime subspaces corresponding to X. The integer tO t) can be computed as 

t(X) = d[Ker (A -X)]. 

The integer k(X) is the degree of the factor s - X  in the m.p. of A. 

From now on k(X) will denote specifically the degree of the factor s - X  in the 
m.p. of A2, X ~ o  (/12). Consider a Jordan decomposition of % relative to A. 
Then A incorporates an internal model of A 2 if and only if for each X @ o (A2) 
there are independent prime subspaces ~ (i E q) of % such that d(%~)i> k(X). 

It is easy to see that this characterization agrees with the previous definition. 
Indeed, the m.p. of A z divides q i.f. of A if and only if for each X E o (A2) , 
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(s-X) k(x) divides q i.f. of A; this is equivalent to the condition that ( s -  
X) h ... . .  (s-X) eq are e.d. of A for q integers ~i >~k(X); and this in turn is 
equivalent to the existence of the prime subspaces %~. 

Next we recall the following characterizations of controllability and ob- 
servability. Let A: %--)%, B: %---)%, C: %---)~. Then (A,B) is controllable 
if and only if 

% = I m ( A - X ) + I m B ,  XEo(A) 

and (C,A) is observable if and only if 

K e r C A K e r ( A - X ) = 0 ,  X~o(A). 

(See [1, Lemma 8.1] for a proof of the second assertion; the first follows by 
duality.) 

Now let ~c c %c be an Ac-invariant subspace and let Pc : %c ---) %c : -" %c / 
~c be the canonical projection. Let A c : %c--->%c be the map induced by A c in 

%---~, i.e. X c Pc -- Pc Ac. We say that the compensator incorporates an internal model 
of A 2 provided 

(IM) ~c exists (as above) such that the map -4c incorporates an internal 
model of A 2, in the sense of the definition given earlier. 

Next assume that, in addition to (IM), 

(i) KerFcNKer(Ac-X)=O, X~o(A2). 

Then we say that the internal model & observable by u. In view of the above 
characterization of observability, (i) is equivalent to the condition that the 
A2-modes of A c are observable by F c. 

Finally suppose that z is readable from y and that, in addition to (IM), 

(ii) I m B c ~ c ~ c  and 

%--'~ = Im(A-c- h)+  Im Jgcz, h~o(A2) 

where Bcz: = PcBc~ • Then we say that the internal model is controllable by z. In 
view of the above characterization of controllability, (ii) is equivalent to the 
condition that the A2-modes of A~ are controllable by Bcz. 

To see what these concepts mean in terms of signal flow assume there exists 
such a subspace ~c and write 

9~ c = % c 1 ( ~  ~)~ c2 

where % d =  ~c and ~(~c2 is an arbitrary complement. Corresponding to this 
decomposition write 
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Then ( IM) is equivalent to the condition that At2 incorporates an internal model 
of A a, and (ii) to the conditions Bcw 2 = 0 and 

%~2=Im(A~2-~)+ImB~zv ~Eo(A2).  

Inserting this decomposition in Fig. 3 yields Fig. 4. 

( s -A2 ) -1  x 2 

Fc2 

BI 7 (s-At)-" xl 

, Fcl 

E I ' 

Fw w 

(s_Acl)-i %}' Bcw 1 

Xcl . Bczl 

D 2 
E 2 

- Z 

J 
B cz2 

Xc2 (S_Ac2)-I v 

Figure 4. The canonical synthesis. 

In Fig. 4 the signal flow from z to u can be thought of as an information 
transmission system: information is transmitted from the z terminal and re- 
ceived at the u terminal; the internal model is the channel. The controllability 
condition (ii) means that the internal model processes all the information 
transmitted from z. Similarly the observability condition (i) means that u 
receives all this processed information. In this sense the synthesis illustrated in 
Fig. 4 is a feedback synthesis. 

3. Technicalities. In this section we derive a useful characterization of output 
regulation. 

Lemma 1. Assume loop stabilify. Then output regulation is equivalent to the 
existence of a map R: %2--> %L such that 

A L R -  RA2= B L (19) 
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and 
DLR = D 2. (20) 

Proof. From (12) and the stability of At_, 

o(AL) n o(A2) = ~ .  

Hence the map R ~ A L R - R A  2 is invertible and thus (19) defines R uniquely 
([4, p. 2251). 

Let %s : = %5 ~ %2. From (8) and (11) the system is described by 

where 

5c~ = Asx s 

z=Dsx s 

A s : = [  ALo A 2BL ]' D s : = [DL, D2]- 

Let %+ (A,) denote the unstable subspace of A s 
regulation is equivalent to 

%+ (A~) c K e r D  s. 

Let Q:%s ~ %s be defined as 

in %s(see [1]). Then output 

where I L (resp. 12) is the identity on %L (resp. %2). Then 

o1  [.o - .  o .°] 
from (19). Thus 

Therefore (21) is equivalent to (20). • 

(21) 
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The main results of this paper will be obtained by the following application 
of Lemma 1. 

Proposition 1. Let ~@o(A2) and let %2x be any prime subspace of ~½ 
corresponding to )~. Set k=d(%zx  ) and define the subspace g C %1@ %~ as 
follows: 

=((Xl,Xc):BcClXl+(Ac-)k)xc=O, X lEKerO 1, 

Xc ~ (A~[Bc C1Ker D1) + Im(A~ - )t)k- 1 }. 

Then structural stability at A 3 implies d (g  ) > n r 

In (22), (AcIB~C1KerD1) is the controllable 
(Ac,B~CIIKerD1). 

Proof. 
let 

(22) 

subspace of the pair 

First we write out equations (19) and (20) in detail. For R: % 2 ~ % r  

= : %2~ %1@ %~. 
R~ 

Substitution of (9), (10) into (19), (20) yields 

(AI+BIFC1)R1-RIA2+B1FcRc=A3+BIFC2 (23a) 

Bc C1R 1 + AcR~ - R~A 2 = B~C 2 (23b) 

D1R 1 = D 2. (23c) 

Let A2x, d3x, C2x, D2x, Rlx and Rex denote respectively the restriction of A z, A 3, 
C2, D2, RI and Re to %2x. Then (23) implies 

(AI + B1FC1)RIx-RlxAEx + BIF~Rcx=A3x + B1FC2x (24a) 

B c C1Rlx + AcR~x- RcxA2x = B~ C2x (24b) 

D 1 Rlx = D2x" (24c) 

As noted in Section 2 there is a basis for %zx such that Az~ has the matrix 
representation Jk(),). In this basis write 

Rlx = [rll,..., rak], 

A3x = [a31 ... . .  a3k], 

D2~ = [a21 . . . . .  d~  ]. 

Ca - -  [c21 . . . . .  c2k] 



The Internal Model Principle for Linear Multivariable Regulators 

Here the % are the columns of R~x, etc. Clearly 

RlxA2x = RlxJk(~)  = [)~rl 1, r l l '+ ~r12 . . . .  , r l ,k-  1 + )~rlk]" 

Thus (24a) is equivalent to the k vector equations 

(A 1 + BaFCI - ) Q r u  + B1F¢rcI = a31 + B1Fc21 

- rll + (A 1 "~- B1FC1 -)~)r12 + BIFcr~2 = a32 + B1Fc22 
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(25) 

-- r l ,k-  1 + (A 1 "~- B1FC1 - X)rlk + B1Fcrck = a3l~ + BlFC2k" 

Similarly (24b) is equivalent to 

B c Clrl l  + (A~ - X)r~l = B~c~ 

B c C l r l 2 -  rcl + (A c --)k)rc2-- BCC22 (26) 

BcClr l k  -- rc, k -  1 "~ (Ac --~k)rck = BcC2k" 

Finally (24c) is equivalent to 

Dlr l i=  d2i, i E  k .  (27) 

By structural stability, output  regulation holds through a nbhd  of A 3 in R nln2. 
This implies, by L e m m a  1, that  (25), (26), (27) have a solution rli , rci(i~k_) 
throughout  a nbhd  of a31 in R nl. Thus for each a31 in some nbhd  of a31 there exist 
~li E %1 and ~¢i ~ %c (i @ _k) such that  

( A 1 + B1FC 1 - - ) k ) P l  1 "Jr- BlFc~cl = t~31 "['- B1Fc21 

Bc Cl~ll + (A c -)k)rcl = BcC21 

Bc C1~12-- ~cl "1- ( Ac - ~ k ) ~ c 2  = BCC22 

Bc C,~lk - ~'c,k-1-1- ( Ac - ~)~ck = BcC2k 

Dl~li=dEi,  i e k _ .  

When as1 = asl denote the corresponding Pli and ~i by rli, r~i. Set 8a31 = h31 -- asp 
6rli = ?li--rig, 8rci = ~i--rcr  Then for any 8a31 in some nbhd of the origin of R n' 
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there exist 8rli E ~)C 1 and 8r~i ~ %~ such that 

(A l+ B1FCI- ~)8rll + B1FcSr~l = 8a31 

B~Cl&11 + (Ac-X)Src~ = 0  

Bc C i r r i 2  + ( A  c - X)t~rc2 =- 8rcl  

BcC18rlk + (Ac -X)Src~ = 8r~, k_ 1 

D18rli=O, i E  k_. 

Here a brief computation shows that 

8rcl E (A  c - XIBc C1Ker DI)  +Im(A c - X) k- 1 

= ( A  c [Bc C 1 K e r  O 1 > q- Im(A~ - X) k-1 

and hence (Srlp 8r~1 ) ~ S . Thus, since 

Span(Sa31:Sa31 in a nbhd of 0 ~ W  1) = %1, 

we find that 

%1 = [A 1 + B1FCI - ~, B1Fc ] ~ 

and hence d($) />  n v • 

4. Necessity of Readability. In this section we prove that readability of z 
from y is a necessary condition for structural stability. We have first the 
following partial result. 

Proposition 2. A synthesis is structurally stable relative to A 3 only if (C1,DI) is 
readable. 

Proof Fix X E o(A z) and any prime subspace %2x of %2 corresponding to X. 
Then $ ,  defined in (22), is contained in 

Ker[ cClO Ac ]0 
Thus Proposition 1 implies 

+erI CC a  ]) nl0 
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and hence 

,(im[ cCao, Ac- ]  nc.o (28) 

Now loop stability implies that A L -X is invertible and thus from (9) the map 

[B~Ca,A~-X]: % 1 ~ % c ~ % ~  is epic. (29) 

Then (28) and (29) imply 

Im[ BcC1D 1 A ~ - ) t ]  ~ I m [ B ~ C I ' A c - X ] O  

which in turn implies 

Ker[B cC~,A c -  X] C Ker[Di,0] 

and hence 

KerC 1CKerD 1. • 

The main results of this section and the next need the following lemma. 

Lemma 2. Let A : % ~ %, B : 67L ~ % be maps, and k >1 1 an integer. Define 
the subspace ~V c °2L @ % as follows: 

c~= ( (u ,x ) :Bu+Ax=O,  x E ( A I ~  ) + I m A k - l ) .  

(a). Let A denote the map induced by A in the factor space % /(A[@ ). Then 

(b). I f  ~ ~ k__ and 

then 

d(cT) < d(°~L) + d(KerAA Im.4 k- 1), 

I m A e - l c ( A l ~  ) + I m A  e 

(3o) 

(31) 

< (32) 

Proof. 

(a). Suppose B is monic. Then % ~ ~5 and 

% ~ :  =A- lo3  n ( ( A I % ) + I m A  k-l). (33) 
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Let P :  % ~ % / ( A [ @  ) be the canonical projection. We have 

d( qO= d( P c~f) + d( ~N KerP) ;  

P ~ c P ( A - ' ~ ) f q P ( ( A J ~  ) + I m A  k- ' )  

(34) 

and 
C K e r A n  I m A  k- 1; 

~;n K e r e  = q;n (A I% ) 

cA-lOj3 N(A[~5 ) 

~6f3. 

(35) 

(36) 

On combining (33)-(36), the inequality (30) follows in this special case. But if B 
is not monic then ~ ~ ~ ~ K e r B ,  ~ ~ K e r B ,  and the final result follows 
on addition of d(KerB)  to both sides of the special inequality just derived. 

(b). If 

I m A e - l c ( A l ~  )+ImA e 

then 

lmXe-  1 C~ I m A  e 

and thus since I < k 

i m X e -  1 c ImA -k. 
If n : =  d ( % )  then (37) implies 

(37) 

imX~ - l c l m A  =. 

So (32) will follow from (30) once we show 

KerXf7 I m A  n = 0. 

For a proof by contradiction suppose there exists ~ E K e r X n I m X  n, ~vaO. 
By the Hamilton-Cayley theorem there exist real scalars a; such that 

_~n = aoi+ a l ~ +  ...  + an - eTn- 1° 

Since KerAv~0, a0=0. Now there exists "~1 such that 

= alA--~ 1 +...  + a,,_ 1.4"- Ix 1. (38) 
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Multiplying (38) by iT n- 1, then by .~n-2, etc. yields 

0=  alXn~l 

0 = a l A  n- lY~ 1 + a2An~l 
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0 = a l A - U ~ l  + . . .  + a n _  lXn~l. 

Since ~ ~ 0 these equations imply in turn a 1 = 0, a 2 = 0 .... , an- 1 = 0 .  T h u s  A "  = 0 ,  

hence ff = 0, a contradiction. • 

Consider a synthesis which is structurally stable at A 3. By Proposition 2, 
KerC 1 cKerD1;  hence, as in (16), ~ can be imbedded in ~ .  Write 

~3 = ~ 1 @ ~ 2 (39) 

where ~2 = ~ and ~1 is an arbitrary complement of ~2 in ~ .  

Theorem 1. (Necessity of readability). A synthesis is structurally stable at 
(A s, B~I ~ 2) only if ([ C 1, C2], [D a, DE] ) is readable. 

Proof Since KerC 1 c K e r D  1 we may write 

C , = [  E1 ] D I  (40) 

for some map E l " J6~l--> 6"~ 1" Corresponding to the decomposition (39) we may 
also write 

C2=[  E2 ] / )2  , Bc=[Bc,,Bc2]. (41) 

We shall have proved 

Ker[ C1, C2] c Ker[D 1, D2] 

once we show/)2 = DE. Assume, for a proof by contradiction, that 

/):v~ D2. (42) 

From Lemma 1 structural stability at (As, BcI~2) implies that throughout a 
nbhd of BeE there exists R : %2--> %/~ such that 

AL R "-- R A  2 = B L 

DLR = D 2. 
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From (9) and (10) these equations imply in particular 

B~C1R 1 + A~R~ - RcA 2 = B~C 2 (43a) 

D1R 1 = D 2. (43b) 

Now let %11 be an arbitrary complement of KerD 1 in j6~l: 

%1 = % 1 1 @ K e r D v  (44) 

Then from (14), D 1 has a right inverse D[:  ~;---~%1 w i t h ^ I m D [ = % w  So 
D1Rz=D2 if and only if R 1 = R I + D [ D  2 for some m a p  R I :  @~2----~J6J~ 1 with 
ImR 1 c K e r D  v Thus throughout a nbhd of B~2 there exist/}1: %2"-+%1, Rc : %2 
~ % c  such that ImR 1 c K e r D  1 and, from (43a), 

B c C , R  1 + A c R  ~ - R~A2= B~( C 2 -  C , D  tlD2). (45) 

Substitution of (40) and (41) into (45) gives 

B c l E I R I + A c R c - R c A z = B ~ I ( E 2 - E 1 D t l D z ) + B c 2 ( D 2 - D 2 ) .  (46) 

Now throughout a nbhd of B~2 (46) has a solution/~l, Rc with Im/~ l c K e r D  1. 
Hence, throughout a nbhd of 8B~2 = 0, the equation 

BclEI(C~RI)-[-" Ac( d R ~ ) - (  6R¢)A2=(  SBc2)( D 2 -  DE) (47) 

has a solution 8RI ,~R c with Im(8/}1)cKerD 1. 
By assumption (42) there is some X E o(A2) and some prime subspace %zx of 

%2 corresponding to )t such that 

/)2[ %2x ¢= DE] %2X" 

Fix such )t and let k=d(%2x ). Choose a basis in %2x so that A21%2x is 
represented by the matrix Jk(~). In this basis, suppose that the first nonzero 
column of (D 2 -  De) [ %2x is the gth, 1 < ~ -<< k. Restricting equation (47) to %2x, 
and writing the matrices out explicitly we find that for any x c ~ %~ there exist 
r l i E K e r D  1 and r~iE %~ ( i E  _~) such that 

B~lElrla + (A~ - X)rcl = 0 

B c lElr12-  Fcl + ( A c - )t)rc2 = 0 

(48) 

BclElrl ,  e- 1 - rc, ~-2 + (Ac - )t)r¢, e- 1 = 0 

B~lElrle - r~, e- 1 + (A~ -)t)r~¢ = x~. 
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From (48) 

(A c - X) e - lx~ = Bc lElrl  l + ( A c _ X )BdEl r l  2 + . . .  

Thus 

+ ( A ~ - X )  ~ -1BclElrl~ -}" (A c -X)¢rc~. 

Im(A~ - )t) e - 1 C ( A  c - X IBm,E, Ker D1) + Im(A c - X) e 

= (Ac[BelE 1Ker D1) + Im(A¢ - X) ~ . 

Substitute (40) and (41) into (22) to obtain 

g = ( ( X l , X c ) : B ~ l E , X l + ( A ~ - ) ~ ) x c = O ,  x ,  E K e r D l ,  

(49) 

X c E (Ac] Bc,E 1Ker D1) + Im(Ac - )Qk-  ,}. 

Now exploit Lemma 2b by defining 

A = A  c - ) t ,  B =  BolE1 

% = %c, ~ = Ker D1, c~ = g .  

Notice that ( A ] @ ) = ( A - / ~ [ @ )  for any /LEe. Then (31) follows from (49). 
Lemma 2b implies 

d (S )  < d(KerD1) = n 1 - q 

which contradicts Proposition 1. Thus (42) is false and/ )2  = D2 after all. [] 

5. Necessity of the Internal Model and Feedback. Having proved the neces- 
sity of readability (under suitable conditions) we consider in this section only 
syntheses in which z is readable from y, and hence adopt the representations 
(17) and (18). 

The following characterization of the internal model will be useful. Recall 
that k()t) is the degree of the factor s - h  in the m.p. of A 2. 

L e m m a  3. Let  A : % ~ % be a map. Then A incorporates an internal model o f  
A 2 if  and only if, for  each )t E o (A 2), 

d[ Ker(A - h)A Im(A - X) k(x)- l ] >I q. 

Proof  Fix )t E o(A2) and consider a Jordan decomposition of % relative to 
A. Let / ~ a ( A )  and let %~ be a prime subspace corresponding to /~ in this 
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decomposition. Finally, define A~:= A I% . and ~ :=  d(%,) .  Then there exists a 
cyclic generator x ~ %~ such that 

% , = S p a n ( x . ( A t . - / * ) x  . . . . .  (A, - /* )e - ix}  

Im(A, - / , ) = S p a n {  ( A , -  / * ) x , . . . , ( A , -  /*) ~-Ix } 

K e r ( A u - / * ) = S p a n ( ( A . - / * ) e - l x } .  

Hence if i is an integer then 

d[ Ker(A.- /*)  A Im(A.- /*) i -1]  = { 1 if i ~  

0 if i>~ .  

From this it is seen that 

d[ Ker(A - X) ¢3 Im(A - X )k(a)- 1] 

equals the number of prime subspaces %x c % corresponding to ~ such that 
d(%x) > k(X), and hence equals the number of i.f. of A divisible by ( s - ) 0  k(x). 

For the main result of this section we shall assume that 

or equivalently 
ImB~w c (A~[B~wEI Ker D1) 

<AclImB~w ) = ( AcIBcwE 1 Ker D1). 

(50) 

A systemic interpretation of (50) is the following: the information carried by 
w(.) which is processed by the compensator pertains only to the plant and is not 
derivable from z(.). It will be shown in Proposition 3 below that (50) is a 
necessary condition for structural stability. 

Theorem 2. (Necessity of the internal model and feedback). Consider a synthe- 
sis in which (50) holds. This synthesis is structurally stable at A 3 only if the 
compensator incorporates an internal model of A 2 which is controllable by z and 
observable by u. 

Define 

~g ~ = ( AclB~wE , Ker D1). (51) 

Let Pc : %c --+ %c : = %c / @% be the canonical projection and define A~, Bcw, B~, 
by the commutative diagram below. 
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Bow A C 

acz ~'c 

Proof of Theorem 2. 
A2; further 
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We shall show that Xc incorporates an internal model of 

%, = Im(X~-) t )+ ImB~z, ~k ~ o(A2) 

and 

KerFc A Ker(Ac-X)=0,  X~ o(A2). 

In view of (50) and (51) the proof will then be complete. 
Fix )rE a(A2) and define S by (22) taking k = k0t). From (17) and (18) 

= {(Xl,Xc):BcwElX 1 + (A c - • )x  c =0, x 1EKerD x, 

x~ E (Ac] B~wE,KerDI) + Im(Ac -)~)k- ,}. 

Now appealing to Lemma 2a with 

A=A~- ) t ,  B=BcwE 1 

=%c,  6~=KerD1, ~ = S  
we find 

d ( g ) < d ( K e r D l ) + d [ K e r ( X ~ - ) t ) f l l m ( A ~ - ) Q k - l ] .  (52) 

Since from Proposition 1 d(S ) > n I and since d(KerD 0 = n 1 - q, (52) implies 

d[ Ker(Xc-)t)N Im(A~-)0 k-I ]/> q. 

Thus from Lemma 3 A~ incorporates an internal model of A 2. 
Loop stability implies that A L - ) t  is invertible. Thus from (9) 

Ker(BiF~) A Ker(A~ - h) = 0 (53) 
and 

%c = Im(A c -)~) + Im(B c C1). (54) 
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From (53) 

KerF~ Cq Ker(A~ - X) = 0 

and hence the internal model is observable by u. From (54) 

%~ = Im(A c - h )  + ImB c 

which implies, from (18), 

%c = Ira(At - h) + Im B~w + Im Bcz. (55) 

Now from (50)/~cw = 0; so when Pc is applied to both sides of (55) there results 

%---~ = Im(A c - ) t )  + Im igc=; 

that is, the internal model is controllable by z. • 

The purpose of the internal model can be understood in the frequency 
domain by reference to Fig. 2. Let Gz(s ) denote the transfer matrix from the x 2 
terminal to the z terminal: 

GL(S ) = DL(s --AL)-1B L + D 2. 

The internal model supplies transmission zeros of GL(s) to cancel the poles of 
( s -  A2)-1. Loop transmission zeros and their relation to the internal model are 
treated in detail in a subsequent article [5]. 

Let x be the degree of the m.p. of__A> If X c incorporates an internal model of 
A 2 its order is at least qx; that is d(%c)  > qx: In [1, Chapter 8] the problem was 
solved of constructing a structurally stable synthesis; it was shown that such a 
synthesis exists with map X c incorporating an internal model of order precisely 
qx. We conclude that qx is the minimal order of internal model necessary for 
structural stability of the type considered here. If a weaker version of structural 
stability is required, for example if some of the elements of A 3 are fixed, then 
usually a complete internal model of the kind described here is not necessary. 

We remark that the choice of data point A 3 in Theorem 2 is not crucial, but 
seems to allow a proof which is simpler than one based on alternative data 
points. 

Assumption (50) is equivalent to the assumption that Bow = 0. This in turn is 
equivalent to the assumption that, in Fig. 4, there is no direct signal flow from w 
to v. That  (50) is a necessary requirement for structural stability is established by 
the following. 

Proposition 3. There is no synthesis in which (50) fails and which is structurally 
stable at (A 3, Bow). 

Proof For a proof by contradiction assume there is such a synthesis. Then 
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from Lemma 1, throughout a nbhd of B~w there exists R : %2-o %L such that 

A L R  - RA  2 = B L 

DLR = D 2. 

(9) and (10), that throughout a nbhd of Bew there exist This implies, from 
R 1 : ~(~2 '''> Sr~l and R c : %2---9. ~)~c such that 

B~CxR 1 + A c R e -  R~A2 = B c C  2 

DIRI  = D2, 

or, from (17) and (18), 

BcwE1R 1 + AcRc - RcA 2 = BcE 2 (56a) 

D1R 1 = D 2. (56b) 

As in (44) let %la be an arbitrary complement of KerD 1 in %1 and let 
D~: ~;-->~%1 be a right inverse of D~ with I m D ~ =  %11. Then (56b) is equivalent 
to R I = R I + D t l D 2  for some map RI:  %2--->%1 with I m R 1 c K e r D 1 ,  so (56a) 
becomes 

BcwE1R 1 + AcR c - RcA 2 = Bcw( E 2 - E1DtD2).  (57) 

Apply Pc to (57) to give 

A c R e - / ~ c A 2  = Bcw(Zz- E,DtD2)"  (58) 

Here Rc:=PcR~_ and we_have used the fact that PcBcwE1KerDl=O. Now (58) 
has a solution R c : % 2 ~  %c throughout a nbhd of B~w- 

Since by (13) [Ca, C2] is epic, for each w ~ ~[f there exist x I E %1 and x 2 ~ %2 
such that 

W = E l X  1 "1- E 2 x  2 

0 = DlX 1 q- D2x2; 

equivalently, for every w ~ ~tf there exist )~l EKerD1 and x2~  %z such that 

w~-- gl3~ 1 -I- (E 2 - E1DtlD2)x 2. 

Thus 

and hence 
6"f = EIKerD 1 + im(E  2 -  EIDtlD2) 

Im Bc~, = BcwIm(E2- E1DtlD2). (59) 
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Since (50) is assumed to fail Bow =#0, and so (59) implies that 

E 2 -- E1DtlD2~=O. 

Hence there exist h ~ a(A2) and a prime subspace %2~ of %2 corresponding to 
such that (E 2 -  E1D~D2) 1%2~#0. Fix a basis for %2x so that A 2 is represented 
by Jk(?t) where k : =  d(%2~). Suppose the first nonzero column of (E 2 -  E1DttD2) 
I%2a is the ~th, ~ ~ _k. Then, restricting (58) to %2~ and writing the matrices out 
explicitly we find that for any ~ E %c there exist ~g ~ %c (i ~ f )  such that 

= 0  

(Ac--~k)rc2=rci 

• ( 6 0 )  

Now (60) implies that for any ~c there exists ~cl such that 

Thus 

Im(A-, - ~) ~ - a C Im(Xc - ~) e (61) 

Next apply Lemma 2b with 

% = % ~ ,  6E=0. 

Then (31) follows from (61) and so (32) implies 

Ker(Ac - X) A Im(~  - X)k(x)- 1= 0. 

By Lemma 3 this implies that A~ does not incorporate an internal model of A2; 
but this contradicts Theorem 2. • 

To further explain the significance of condition (50) we shall give an intuitive 
argument to indicate why Proposition 3 ought to be true. Assume for simplicity 
that El = 0 and F--0. Then Fig. 3 reduces to Fig. 5. 
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B 1 

F c , 

( s -A2 ) -1  x 2 

A3  E 2 

I> 0 - -  

w 

7 Bcw 

Xc (S-Ac)-I Bcz 

D 2 

Figure 5. Figure 3 with E 1 --0,  F= 0. 

Suppose the synthesis is structurally stable at A 3 so that, by Theorem 2, the 
compensator incorporates an internal model of A 2. Suppose also that (50) fails, 
namely Bcw-vSO. The compensator can be thought of as acting in the following 
way. On the basis of information about z, the internal model injects into the 
loop signals which (asymptotically) counterbalance the disturbances entering via 
/13 and D 2. The internal model is activated by information about z via Bcz. Since 
E l = 0  and [C1,C2] is epic, E 2 is epic. Thus for some initial condition x2(0 ) the 
signal w(t)= E2x2(t ) will not converge to 0 as t---)oe. Hence, possibly after a 
small perturbation of Bow, the internal model processes, not the 'accurate' 
information BczZ (.), but instead a 'noisy' signal B=z(.)+ B~ww (.). Thus in the 
structure of Fig. 5 any useful rrle played by the signal path x 2 ~ w ~ x  ~ is 
(generally) vitiated by a small perturbation in B~. 

6. Conclusion. Synthesis procedures for achieving structurally stable con- 
trollers in the linear multivariable setting have been given by Davison [3], 
Pearson et al. [6] and Wonham [1]. The present paper has considered the 
converse problem: What controller properties are necessary for structural stabil- 
ity? Our major conclusion can be summarized as The Internal Model Principle: 
A regulator synthesis is structurally stable only if the controller utilizes feedback of 
the regulated variable, and incorporates in the feedback path a suitably reduplicated 
model of the dynamic structure of the exogenous signals which the regulator is 
required to process'. 
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