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Abstract—Resonant controllers have gained significant impor-
tance in recent years in multiple applications. Because of their
high selectivity, their performance is very dependent on the ac-
curacy of the resonant frequency. An exhaustive study about dif-
ferent discrete-time implementations is contributed in this paper.
Some methods, such as the popular ones based on two integrators,
cause that the resonant peaks differ from expected. Such inac-
curacies result in significant loss of performance, especially for
tracking high-frequency signals, since infinite gain at the expected
frequency is not achieved, and therefore, zero steady-state error is
not assured. Other discretization techniques are demonstrated to
be more reliable. The effect on zeros is also analyzed, establishing
the influence of each method on the stability. Finally, the study is
extended to the discretization of the schemes with delay compensa-
tion, which is also proved to be of great importance in relation with
their performance. A single-phase active power filter laboratory
prototype has been implemented and tested. Experimental results
provide a real-time comparison among discretization strategies,
which validate the theoretical analysis. The optimum discrete-time
implementation alternatives are assessed and summarized.

Index Terms—Current control, digital control, power condition-
ing, pulsewidth-modulated power converters, Z transforms.

NOMENCLATURE

Variables
C Capacitance.
f Frequency in hertz.
G(s) Model in the s domain.
G(z) Model in the z domain.
H(s) Resonant controller in the s domain.
H(z) Resonant controller in the z domain.
i Current.
K Gain of resonant controller.
L Inductance value.
m Pulsewidth modulation (PWM) duty cycle.
N Number of samples to compensate with com-

putational delay compensation.
n Highest harmonic to be compensated.
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R Equivalent series resistance value.
R(s) Resonant term in the s domain.
R(z) Resonant term in the z domain.
T Period.
θ Phase of grid voltage.
V Voltage.
ω Angular frequency in radians per second.
u(s) Input value.
y(s) Output value.

Subscripts
1 Fundamental component.
a Actual value (f ).
c Generic current controller (G).
d Degree of freedom in the zero-pole matching

discretization method (K).
dc Relative to the dc link (V ).
f Relative to the passive inductive filter (V , i,

L, R, and G).
I Equivalent to the double of the integral gain

of a proportional + integral (PI) controller in
dq frame (K).

k Relative to the kth harmonic (H , R, KP , and
KI ).

L Relative to the load (i).
Lh Relative to the harmonics of the load (i).
o Resonant frequency of a continuous resonant

term or resonant controller (f and ω).
P Equivalent to the double of the proportional

gain of a PI controller in dq frame (K).
PCC Relative to the point of common coupling

(V ).
PL Relative to the plant (G).
rms Root mean square.
s Relative to sampling (f and T ).
src Relative to the voltage source (V , i, and L).
sw Relative to switching (f ).
T Sum of the gains for every value of harmonic

order k (KP ).
X Resonant term R or resonant controller H

discretized with method X , where X ∈
{zoh, foh, f,b, t, tp, zpm, imp}.

X&Y Resonant term R or resonant controller H
implemented with two discrete integrators,
with the direct one discretized with method X
and the feedback one with method Y , where
X,Y ∈ {zoh, foh, f,b, t, tp, zpm, imp}.
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X − Y Resonant controller HVPI(z), in which
R1(s) is discretized with method X and
R2(s) with method Y , where X,Y ∈
{zoh, foh, f,b, t, tp, zpm, imp}.

Superscripts
∗ Reference value.
1 Resonant term R of the form s/(s2 + ω2

o ).
2 Resonant term R of the form s2/(s2 + ω2

o ).
d Including delay compensation (H and R).
PR Resonant controller H of the PR type.
VPI Resonant controller H of the VPI type.

Others
∆x Difference between x and its target value (if ).
x̂ Estimated value of x (θ1 and ω1).

I. INTRODUCTION

IN recent years, resonant controllers have gained significant
importance in a wide range of different applications due to

their overall good performance. They have been applied with
satisfactory results to cases such as distributed power generation
systems [1], [2], dynamic voltage regulators [3], [4], wind tur-
bines [5], [6], photovoltaic systems [7], [8], fuel cells [9], [10],
active rectifiers [11], active power filters (APFs) [12]– [17],
microgrids [18], and permanent magnet synchronous motors
[19].

Resonant controllers allow to track sinusoidal references of
arbitrary frequencies with zero steady-state error for both single-
phase and three-phase applications. An important saving of
computational burden and complexity is obtained due to their
implementation in stationary frame, avoiding the coordinates
transformations, and providing perfect tracking of both positive
and negative sequences [1], [13], [14], [20]–[22]. Resonant con-
trollers in synchronous reference frame (SRF) have been also
proposed to control pairs of harmonics simultaneously when no
unbalance exist [7], [15]–[17], [22], [23].

An essential step in the implementation of resonant digital
controllers is the discretization. Because of the narrow band and
infinite gain of resonant controllers, they are specially sensitive
to this process. Actually, a slight displacement of the resonant
poles causes a significant loss of performance. In the case of
proportional+resonant (PR) controllers [14], [20]–[22], even for
small frequency deviations, the effect of resonant terms becomes
minimal, and the PR controller behaves just as a proportional
one [14]. The resonant regulator proposed in [16] is less sensitive
to these variations when cross coupling due to the plant appears
in the dq frame, but if these deviations in the resonant poles
are present, it does not achieve zero steady-state error either.
Furthermore, if selectivity is reduced to increase robustness to
frequency variations, undesired frequencies and noise may be
amplified. Thus, an accurate peak position is preferable to low
selectivity. Therefore, it is of paramount importance to study
the effectiveness of the different alternatives of discretization
for implementing digital resonant controllers, due to the critical
characteristics of their frequency response.

As proved in this paper, many of the existing discretization
techniques cause a displacement of the poles. This fact results in

a deviation of the frequency at which the infinite gain occurs with
respect to the expected resonant frequency. This error becomes
more significant as the sampling time and the desired peak
frequency increase. In practice, it can be stated that most of these
discretization methods result in suitable implementations when
tracking 50/60 Hz (fundamental) references and even for low-
order harmonics. However, as shown in this paper, some of them
do not perform so well in applications in which signals of higher
frequencies should be tracked, such as APFs and ac motor drives.
This error has special relevance in the case of implementations
based on two integrators, since it is a widely employed option
mainly due to its simplicity for frequency adaptation [8], [13],
[15], [23]–[25].

Discretization also has an effect on zeros, modifying their
distribution with respect to the continuous transfer function.
These discrepancies should not be ignored because they have
a direct relation with stability. In fact, resonant controllers are
often preferred to be based on the Laplace transform of a cosine
function instead of that of a sine function because its zero im-
proves stability [13], [19]. In a similar way, the zeros mapped
by each technique will affect the stability in a different man-
ner. Consequently, it is also convenient to establish which are
the most adequate techniques from the point of view of phase
versus frequency response.

However, for large values of the resonance frequency, the
computational delay affects the system performance and may
cause instability. Therefore, a delay compensation scheme
should be implemented [14], [15], [17], [23]. It can be per-
formed in the continuous domain as proposed in [15]. However,
the discretization of that scheme leads to several different
expressions. A possible implementation in the z domain was
posed in [14], but there are other possibilities. Consequently, it
should be analyzed how each method affects the effectiveness
of the computational delay compensation. This aspect has a
significant relevance since it will determine the stability at the
resonant frequencies.

The study of these effects of the discretization on resonant
controllers has not been analyzed in the existing literature.
Therefore, it is of paramount importance to analyze how each
method affects the performance in relation with these aspects.

A single-phase APF laboratory prototype has been built to
check the theoretical approaches, because it is an application
very suitable for proving the controllers performance when
tracking different frequencies, and results can be extrapolated to
other single-phase and three-phase applications where a perfect
tracking/rejection of references/disturbances is sought through
resonant controllers.

The paper is organized as follows. Section II presents alterna-
tive digital implementations of resonant controllers. The reso-
nant peak displacement depending on the discretization method,
as well as its influence on stability, is analyzed in Section III.
Several discrete-time implementations including delay compen-
sation, and a comparison among them, are posed in Section IV.
Section V summarizes the performance of the digital imple-
mentations in each aspect and establishes the most optimum
alternatives depending on the existing requirements. Finally,
experimental results of Section VII validate the theoretical
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analysis regarding the effects of discretization on the perfor-
mance of resonant controllers.

II. DIGITAL IMPLEMENTATIONS OF RESONANT CONTROLLERS

A. Resonant Controllers in the Continuous Domain

A PR controller can be expressed in the s domain as [14],
[20]–[22]

HPR(s) = KP + KI
s

s2 + ω2
o

= KP + KI R
1(s) (1)

with ωo being the resonant angular frequency. R1(s) is the
resonant term, which has infinite gain at the resonant frequency
(fo = ωo/2π). This assures perfect tracking for components
rotating at fo when implemented in closed-loop [21]. R1(s)
is preferred to be the Laplace transform of a cosine function
instead of that of a sine function, since the former provides
better stability [13], [19].

HPR(s) in stationary frame is equivalent to a propor-
tional+integral (PI) controller in SRF [21]. However, if cross
coupling due to the plant is present in the dq frame, unde-
sired peaks will appear in the frequencies around fo in closed
loop [17]. This anomalous behavior worsens even more the per-
formance when frequency deviates from its expected value. An
alternative resonant regulator, known as vector PI (VPI) con-
troller, is proposed in [16]:

HVPI(s) =
KP s2 + KI s

s2 + ω2
o

. (2)

The VPI controller cancels coupling terms produced when
the plant has the form 1/(sLf + Rf ) [16], [17], [23], such as
in shunt APFs and ac motor drives, with Lf and Rf being,
respectively, the inductance and the equivalent series resistance
of an R–L filter. Parameters detuning due to estimation errors in
the values of Lf and Rf has been proved in [17] to have small
influence on the performance.

HVPI(s) can be decomposed as the sum of two resonant
terms, R1(s) and R2(s), as follows:

HVPI(s) = KP
s2

s2 + ω2
o

+ KI
s

s2 + ω2
o

= KP R2(s) + KI R
1(s). (3)

Equation (3) permits to discretize R1(s) and R2(s) with dif-
ferent methods. In this manner, the most optimum alternative for
HVPI(z) will be the combination of the most adequate discrete-
time implementation for each resonant term.

B. Implementations Based on the Continuous Transfer
Function Discretization

Table I shows the most common discretization methods. The
Simpson’s rule approximation has not been included because it
transforms a second-order function to a fourth-order one, which
is undesirable from an implementation viewpoint [26].

The techniques reflected in Table I have been applied to R1(s)
and R2(s), leading to the discrete mathematical expressions
shown in Table II. Ts is the controller sampling period and
fs = 1/Ts is the sampling rate. From Table II, it can be seen that

TABLE I
RELATIONS FOR DISCRETIZING R1 (s) AND R2 (s) BY DIFFERENT METHODS

the effect of each discretization method on the resonant poles
displacement will be equal in both R1(s) and R2(s), since each
method leads to the same denominator in both resonant terms.

It should be noted that zero-pole matching (ZPM) permits
a degree of freedom (Kd ) to maintain the gain for a specific
frequency [26].

C. Implementations Based on Two Discrete Integrators

The transfer function HPR(s) can be discretized by decom-
posing R1(s) in two simple integrators, as shown in Fig. 1(a)
[13]. This structure is considered advantageous when imple-
menting frequency adaptation, since no explicit trigonometric
functions are needed. Whereas other implementations require
the online calculation of cos(ωoTs) terms, in Fig. 1 schemes
the parameter ωo appears separately as a simple gain, so it can
be modified in real time according to the actual value of the
frequency to be controlled. Indeed, it is a common practice to
implement this scheme due to the simplicity it permits when
frequency adaptation is required [13], [15], [24], [25].

An analogous reasoning can be applied to HVPI(s), leading
to the block diagram shown in Fig. 1(b). Instead of developing
an equivalent scheme to the total transfer function HVPI(s),
it could be obtained as an individual scheme for implementing
each resonant term R1(s) and R2(s) could be obtained, but
in this case the former is preferable because of the saving of
resources.

It has been suggested in [8] to discretize the direct integrator of
Fig. 1(a) scheme using forward Euler method and the feedback
one using the backward Euler method. Additional alternatives
of discretization for both integrators have been analyzed in [25],
and it was also proposed to use Tustin for both integrators, or to
discretize both with backward Euler, adding a one-step delay in
the feedback line. Nevertheless, using Tustin for both integrators
poses implementation problems due to algebraic loops [25]. In
this paper, these proposals have been also applied to the block
diagram shown in Fig. 1(b). Table III shows these three discrete-
time implementations of the schemes shown in Fig. 1.
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TABLE II
z-DOMAIN TRANSFER FUNCTIONS OBTAINED BY DISCRETIZING R1 (s) AND R2 (s) BY DIFFERENT METHODS

Fig. 1. Block diagrams of frequency adaptive resonant controllers (a) HPR (s)
and (b) HVPI (s) based on two integrators.

It should be noted that Hj
t&t(z) and Hj

t (z) are equivalent
for both j = PR and j = VPI, since the Tustin transformation
is based on a variable substitution. The same is true for the
rest of methods that consist in substituting s as a function of z.
However, zero-order hold (ZOH), first-order hold (FOH), and
impulse invariant methods applied separately to each integrator
do not lead to Hj

zoh , Hj
foh , and Hj

imp , respectively. Indeed, to dis-
cretize an integrator with ZOH or FOH results in the same way
as a forward Euler substitution, while to discretize an integrator
with the impulse invariant is equivalent to employ backward
Euler.

III. INFLUENCE OF DISCRETIZATION METHODS

ON ROOTS DISTRIBUTION

A. Resonant Poles Displacement

The z domain transfer functions obtained in Section II can be
grouped in the sets of Table IV, since some of them present an
identical denominator, and therefore, coinciding poles.

Fig. 2 represents the pole locus of the transfer functions in
Table IV. Damped resonant controllers do not assure perfect
tracking [21]; poles must be placed in the unit circumference,
which corresponds to a zero damping factor (infinite gain). All
discretization techniques apart from A and B lead to undamped
poles; the former maps the poles outside of the unit circle,
whereas the latter moves them toward the origin, causing a
damping factor different from zero, so both methods should be
avoided. This behavior finds its explanation in the fact that these
two techniques do not map the left half-plane in the s domain
to the exact area of the unit circle [26].

However, there is an additional issue that should be taken into
account. Although groups C, D, and E achieve infinite gain,
it can be appreciated that, for an identical fo , their poles are
located in different positions of the unit circumference. This
fact reveals that there exists a difference between the actual
resonant frequency (fa ) and fo , depending on the employed
implementation, as also observed in Fig. 3(d). Consequently,
the infinite gain may not match the frequency of the controller
references, causing steady-state error.

Fig. 3(a)–(c) depicts the error fo − fa in hertz as a function
of fo and fs for each group. The poles displacement increases
with Ts and fo , with the exception of group E. The slope of the
error is also greater as these parameters get higher.

Actually, the denominator of group D is a second-order Tay-
lor series approximation of group E. This fact explains the in-
creasing difference between them as the product ωoTs becomes
larger.

Some important outcomes from this study should be
highlighted.

1) The Tustin transformation, which is a typical choice in
digital control due to its accuracy in most applications,
features the most significant deviation in the resonant
frequency.

2) The error exhibited by the methods based on two dis-
cretized integrators becomes significant even for high
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TABLE III
DISCRETE TRANSFER FUNCTIONS HPR (s) AND HVPI (s) OBTAINED BY EMPLOYING TWO DISCRETIZED INTEGRATORS

TABLE IV
GROUPS OF EXPRESSIONS WITH IDENTICAL POLES IN THE z DOMAIN

Fig. 2. Pole locus of the discretized resonant controllers at fs = 10 kHz
(fundamental to the 17th odd harmonics).

sampling frequencies and low-order harmonics. For in-
stance, at fs = 10 kHz, group D exhibits an error of
+0.7 Hz for the seventh harmonic, which causes a consid-
erable gain loss [see Fig. 3(d)]. When dealing with higher
harmonic orders (h), such as 13 and 17, it raises to 4.6 and
10.4 Hz, respectively, which is unacceptable.

3) Group E leads to poles that match the original continuous
ones, so the resonant peak always fits the design frequency
fo .

B. Effects on Zeros Distribution

Once assured infinite gain due to a correct position of the
poles, another factor to take into account is the displacement of
zeros caused by the discretization. Resonant controllers that be-
long to group E have been proved to be more suitable for an op-
timum implementation in terms of resonant peak displacement.

However, the numerators of these discrete transfer functions are
not the same, and they depend on the discretization method.
This aspect has a direct relation with stability, so it should not
be ignored.

On the other hand, although group D methods produce a
resonant frequency error, they avoid the calculation of explicit
cosine functions when frequency adaptation is needed. This fact
may imply an important saving of resources. Therefore, it is also
of interest to establish which is the best option of that set.

The analysis will be carried out by means of the frequency
response. The infinite gain at ωo is given by the poles po-
sition, whereas zeros only have a visible impact on the gain
at other frequencies. Concerning phase, the mapping of zeros
provided by the discretization may affect all the spectrum, in-
cluding the phase response near the resonant frequency. Due
to the high gain around ωo , the phase introduced by the reso-
nant terms at ω ≈ ωo will have much more impact on the phase
response of the whole controllers than at the rest of the spec-
trum [14]. Therefore, the influence of discretization on the stabil-
ity should be studied mainly by analyzing the phase lag caused at
ω ≈ ωo .

1) Displacement of R1(s) Zeros by Group E Discretiza-
tions: Fig. 4 compares the frequency response of a resonant
controller R1(s), designed for the seventh harmonic, when dis-
cretization methods of group E are employed at fs = 10 kHz.
An almost equivalent magnitude behavior is observed, even
though R1

imp(z) has a lower attenuation in the extremes, and
both R1

tp(z) and R1
foh(z) tend to reduce the gain at high fre-

quencies. However, the phase versus frequency plot differs more
significantly.

From Fig. 4, it can be appreciated that R1
tp(z) and R1

foh(z)
are the most accurate when comparing with R1(s). On the
contrary, the phase lag introduced by R1

zoh(z) and R1
zpm(z)

is higher than for the continuous model. This fact is particu-
larly critical at ω ≈ ωo , even though they also cause delay for
higher frequencies. As shown in Fig. 4, they introduce a phase
lag at fo = 350 Hz of 6.3◦. For higher values of ωoTs , it be-
comes greater. For instance, if tuned at a resonant frequency
of fo = 1750 Hz with fs = 10 kHz, the delay is 32◦. There-
fore, the implementation of R1

zoh(z) and R1
zpm(z) may lead to

instability. On the other hand, R1
tp(z), R1

foh(z), and R1
imp(z)

accurately reproduce the frequency response at the resonance
frequency, maintaining the stability of the continuous controller
at ωo . Fig. 4 also shows that R1

imp(z) can be considered the most
advantageous implementation of R1(s), since it maintains the
stability at ω ≈ ωo and introduces less phase lag in open-loop
for the rest of the spectrum, thereby allowing for a larger phase
margin.
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Fig. 3. Deviation of the resonance frequency of the discretized controller
fa from the resonance frequency fo of the continuous controller. (a) Group
C transfer functions. (b) Group D transfer functions. (c) Group E transfer
functions. (d) Discretized seventh harmonic resonant resonant controller at fs =
10 kHz.

Fig. 4. Bode plot of R1 (s) discretized with group E methods for a seventh
harmonic resonant controller at fs = 10 kHz.

In any case, the influence of the discretization at ω �= ωo is
not as important as its effect on the stability at ω ≈ ωo , since the
gain of R1(z) is much lower at those frequencies. Consequently,
this aspect can be neglected unless low sample frequencies,
high resonant frequencies, and/or large values of KI /KP are
employed. In these cases, it can be taken into account in order
to avoid unexpected reductions in the phase margin that could
affect the stability, or even to increase its value over the phase
margin of the continuous system by means of R1

imp(z).
2) Displacement of R2(s) Zeros by Group E Discretizations:

The frequency response of R2(s) discretizations is shown in
Fig. 5(a). It can be seen that ZOH produces a phase lag near the
resonant frequency that could affect stability.

Among the rest of possibilities of group E, the impulse invari-
ant method is also quite unfavorable: it provides much less gain
after the resonant peak than the rest of the discretizations. This
fact causes that the zero phase provided by R2(z) for ω > ωo

has much less impact on the global transfer function HVPI(z),
in comparison to the phase delay introduced by R1(z). In this
manner, the phase response of HVPI(z) would show a larger
phase lag if R2(s) is discretized with impulse invariant instead
of other methods, worsening the stability at ω > ωo .

Actually, as shown in Fig. 5(b), if R2
imp(z) is used, the delay

of HVPI(z) can become close to −45◦ for certain frequencies,
which is certainly not negligible. This is illustrated, as an exam-
ple, in Fig. 5(b), in which Bode plot of HVPI(z) is shown when
it is implemented as R1

imp(z), and R2(s) is discretized with
the different methods. Fixed values of KI and KP have been
employed to make the comparison possible. KI = KP Rf /Lf

has been chosen, so the cross coupling due to the plant is can-
celed [16], [17], and an arbitrary value of 1 has been assigned
to KP as an example. According to the real parameters of the
laboratory prototype, Lf = 5 mH and Rf = 0.5 Ω. If the ra-
tio KI /KP is changed, the differences will become more or
less notable, but essentially, each method will still affect in the
same manner. It should be remarked that the phase response
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Fig. 5. Study of group E discretizations effect on R2 (s) zeros. (a) Frequency
response of R2 (s) discretized with group E methods for a seventh harmonic
resonant controller at fs = 10 kHz. (b) Frequency response of HVPI (z) for a
third harmonic resonant controller at fs = 10 kHz, with R1

im p (z), when R2 (s)
is discretized by each method of group E . KP = 1 and KI = KP Rf /Lf ,
with Rf = 0.5 Ω and Lf = 5 mH.

of HVPI(z) at ω ≈ ωo is not modified by R1
imp(z), but only

by the discretization of R2(s). Fig. 5(b) also shows that some
implementations introduce less phase at low frequencies than
HVPI(s), but the influence of this aspect on the performance
can be neglected.

In conclusion, any of the discretization methods of group E,
with the exception of impulse invariant and ZOH, are adequate
for the implementation of R2(z). Actually, the influence of
these two methods is so negative that they could easily lead
to instability continuous resonant controllers with considerable
stability margins.

3) Displacement of Zeros by Group D Discretizations:
Fig. 6(a) shows the Bode plot of R1(s) implemented with set
D schemes. R1

f&b(z) produces a phase lead in comparison to

Fig. 6. Frequency response of R1 (s) and HVPI (s) implemented with group
D methods for a seventh harmonic resonant controller at fs = 10 kHz.
(a) R1 (s). (b) HVPI (s), KP = 1, and KI = KP Rf /Lf , with Rf = 0.5 Ω
and Lf = 5 mH.

R1(s), whereas R1
b&b(z) causes a phase lag. This is also true

at ω ≈ ωo , which are the most critical frequencies. Therefore,
R1

f&b(z) is preferable to R1
b&b(z). On the other hand, as can be

appreciated in Fig. 6(b), the Bode plot of HVPI
f&b (z) and HVPI

b&b(z)
scarcely differ. They both achieve an accurate reproduction of
HVPI(s) frequency response. Actually, at ω ≈ ωo , they provide
exactly the same phase. Consequently, they can be indistinctly
employed with satisfactory results.

IV. DISCRETIZATION INFLUENCE ON COMPUTATIONAL

DELAY COMPENSATION

A. Delay Compensation in the Continuous Domain

For large values of ωo , the delay caused by Ts affects the sys-
tem performance and may cause instability. Therefore, a delay



YEPES et al.: EFFECTS OF DISCRETIZATION METHODS ON THE PERFORMANCE OF RESONANT CONTROLLERS 1699

compensation scheme should be implemented [14], [15], [17],
[23], [27].

1) Delay Compensation for HPR(s): Concerning resonant
controllers based on the form HPR(s), a proposal was posed
in [15] for performing the compensation of the computational
delay. The resulting transfer function can be expressed in the s
domain as

HPRd

(s) = KP + KI
s cos(ωoNTs) − ωo sin(ωoNTs)

s2 + ω2
o

= KP + KI R
1d

(4)

with N being the number of sampling periods to be compen-
sated. According to the work of Limongi et al. [23], N = 2 is
the most optimum value.

2) Delay Compensation for HVPI(s): Because of HVPI(s)
superior stability, it only requires computational delay for much
greater resonant frequencies than HPR(s) [16], [17], [23].
Delay compensation could be obtained by selecting KP =
cos(ωoNTs) and KI = −ωo sin(ωoNTs). However, this ap-
proach would not permit to choose the parameters so as to
satisfy KI /KP = Rf /Lf ; thus, it would not cancel the cross
coupling terms as proposed in [16] and [17].

Therefore, an alternative approach is proposed shortly.
R1d

(s) and R2d
(s) are individually implemented with a de-

lay compensation of N samples each, so KP and KI can be
still adjusted in order to cancel the plant pole:

HVPId

(s) = KP
s2 cos(ωoNTs) − sωo sin(ωoNTs)

s2 + ω2
o

+ KI
s cos(ωoNTs) − ωo sin(ωoNTs)

s2 + ω2
o

= KP R2d

+ KI R
1d

.

(5)

3) Delay Compensation for R1d
(s) and R2d

(s): If the res-
onant terms are decomposed by the use of two integrators, it
is possible to perform the delay compensation by means of the
block diagrams depicted in Fig. 7(a) and (b) for R1d

(s) and
R2d

(s), respectively.
Fig. 8 illustrates the effect of the computational delay com-

pensation for both R1d
(s) and R2d

(s), setting fo = 350 Hz and
fs = 10 kHz as an example. As N increases, the 180◦ phase shift
at fo rises, compensating the phase lag that would be caused by
the delay.

B. Discrete-Time Implementations of Delay
Compensation Schemes

As stated in the previous section, the delay compensation
should be implemented for each resonant term separately. For
this reason, it is convenient to study how each discretization
method affects the effectiveness of the delay compensation for
R1d

(z) and R2d
(z) individually. Effects on groups E and D

implementations, due to their superior performance, are ana-
lyzed. Tables V and VI reflect the discrete transfer functions
obtained by the application of these methods to R1d

(s) and
R2d

(s), respectively. R1d

f&b(z) and R1d

b&b(z) result of apply-
ing the corresponding discretization transforms to the scheme

Fig. 7. Implementations of (a) R1d
(s) and (b) R2d

(s) based on two
integrators.

Fig. 8. Frequency response of (a) R1d
(s) and (b) R2d

(s) for different values
of N ; fo = 350 Hz and fs = 10 kHz.

shown in Fig. 7(a). On the other hand, R2d

f&b(z) and R2d

b&b(z)
are obtained by discretizing the integrators shown in Fig. 7(b).

Substituting N = 0 in Tables V and VI leads to the expres-
sions of Tables II and III, respectively. It can be also noted that
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TABLE V
R1d

(s) DISCRETIZED BY GROUPS E AND D

TABLE VI
R2d

(s) DISCRETIZED BY GROUPS E AND D

R1d

imp(z) is equivalent to the proposals of Yuan et al. [14] for
digital implementation of the computational delay.

C. Study of Discretization Effects on Delay Compensation

To quantify the influence of each discretization technique on
the desired delay compensation, an error function is defined as
follows:

Error = lim
ω→ωo

(
� Rid

(s) − � Rid

X (z)
)

(6)

for each discretization method X , with i ∈ {1, 2}. This param-
eter reflects the difference in degrees between the expected and
the actual phase lead introduced. It can be evaluated as a func-
tion of fs , N , and ωo . Figs. 9 and 10 show the resulting values
of applying the error function to discretization methods E and
D, respectively.

Since the variables Ts and ωo always appear together in the
expressions as a product, both parameters have an analogous
impact on the delay compensation. In this manner, the error
increases with Ts with the same rate of change as with ωo .

Fig. 9(a) represents the error function (6) evaluated in the
cases of R1d

zoh(z) and R2d

zoh(z). It assumes large values for most
combinations of Ts and ωo , so these discretizations are not ap-

propriate. It should be also noted that, for R1d

zoh(z) and R2d

zoh(z),
the error is independent of N .

On the other hand, as illustrated in Fig. 9(b), three of the
considered discretization methods provide an accurate delay
compensation for both resonant terms: impulse invariant, Tustin
with prewarping, and FOH.

From Fig. 9(c) and (d), it can be appreciated that the ZPM
method is not recommendable for discretizing neither R1d

(s)
nor R2d

(s). Indeed, it provides the largest phase error. It is
interesting to note that, on the contrary, ZPM is adequate for
R2(s) when delay compensation is not included (proved in
Section III). This result is also confirmed by the surface N = 0
shown in Fig. 9(d).

Fig. 9 illustrates that, for E methods, the discrepancy is more
significant as ωo is higher. This is really important since the
effect of delay compensation must be taken into account for high
resonant frequencies. Concerning group D implementations,
they do not always lead to a positive slope ∂Error/∂ωo ; for
certain intervals, as shown in Fig. 10, the opposite is true. In
any case, the error is of great magnitude in both groups for most
values of Ts and ωo .

It can be observed in Fig. 10(a) and (c) that R1d

b&b and R2d

b&b
introduce a phase lead greater than the continuous controller.
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Fig. 9. Study of the error in degrees between the discretized and the continuous

phase within a vicinity of the resonant frequency, for R1d
(s) and R2d

(s)
discretized with group E methods. (a) R1d

zoh (z) and R2d

zoh (z). The same error

is obtained for N = 0, 1, 2. (b) R1d

foh (z), R1d

tp (z), R1d

im p (z), R2d

foh (z), R2d

tp (z),

and R2d

im p (z). The same error is obtained for N = 0, 1, 2. (c) R1d

zpm (z). (d)

R2d

zpm (z).

Fig. 10. Study of the error in degrees between the discretized and the contin-

uous phase within a vicinity of the resonant frequency for R1d
(s) and R2d

(s)
discretized with group D methods. (a) R1d

f&b (z). The error of R1d

b&b (z) is the

opposite. (b) R2d

f&b (z). (c) R2d

b&b (z). Note that Error < 0.

This fact is preferable to the cases of R1d

f&b and R2d

f&b , in which
stability is reduced by a phase lag, as depicted, respectively, in
Fig. 10(a) and 10(b). Nevertheless, the positive phase difference
is actually so large that it could also lead to an unstable system.
For these reasons, group D methods should be avoided if delay
compensation is needed.

In sum, the only methods that provide an accurate discretiza-
tion of delay compensation schemes are, for either resonant
term, the impulse invariant, Tustin with prewarping, or FOH
transforms.
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TABLE VII
PERFORMANCE OF THE DISCRETE-TIME IMPLEMENTATIONS

TABLE VIII
OPTIMUM DISCRETE-TIME IMPLEMENTATIONS

V. SUMMARY OF OPTIMUM DISCRETE-TIME

IMPLEMENTATIONS

Table VII summarizes the performance of the implementa-
tions in each of the aspects that have been carried out in the
previous sections. The second and third columns correspond to
Section III-A, the fourth column corresponds to Section III-B,
and the fifth one corresponds to Section IV. Table VII also indi-
cates which alternatives include explicit trigonometric functions
in their difference equations, which lead to a higher computa-
tional burden if they are calculated online (frequency adapta-
tion). Finally, the last column points out some previous works
that employ certain implementations.

Different situations and requirements may arise when dealing
with real applications. Table VIII shows the best tradeoff alter-
natives for discrete-time implementation depending on which
are the specific requirements of a particular application.

It is known that one of the most important drawbacks of res-
onant regulators is their sensitiveness to frequency variations
of the signal to be controlled [2], [32]. Many of the existing
proposals for frequency adaptation of resonant controllers rely
on discretizing two separated integrators (defined as group D
in Section II-C) [8], [24], [25]. Their main advantage is the
fact that they do not require the online computation of ex-

plicit cosine functions. However, these schemes cause an er-
ror in the frequency at which the resonance occurs, as proved
in Section III-A. Moreover, as concluded in Section IV, group
D implementations are not adequate for delay compensation
schemes. Therefore, they should only be employed when de-
lay compensation is not required and frequency adaptation is
needed in combination with a low value of the product ωoTs . In
these cases, their advantage in computational simplicity makes
them an interesting solution, specially when low-cost digital de-
vices are employed. From the whole study, the best alternatives
among group D methods are HPR

f&b(z), HVPI
f&b (z), and HVPI

b&b(z).
On the other hand, referring back to Section III-A, group E

methods achieve an accurate resonant poles mapping. Further-
more, it is possible to provide frequency adaptation to group
E expressions by calculating the coefficients as ωo varies, as
done in [33]. In this manner, the performance would be supe-
rior in terms of resonant poles displacement and stability, even
when tracking high frequencies and employing low values of
fs . Nevertheless, it would require the online computation of
a cosine function for each resonance in every sample, so the
computational burden may increase significantly.

Among group E discretizations, the most appropriate from
the point of view of stability have been demonstrated in
Section III-B to be FOH, Tustin with prewarping and ZPM
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in the case of R2(s), and the impulse invariant method for
R1(s). However, ZPM is not adequate for implementing delay
compensation, as proved in Section IV.

VI. EXPERIMENTAL SETUP DESCRIPTION

The experimental setup consists of a single-phase APF pro-
totype; the choice of implementing the resonant controllers
for an APF is mainly based on the fact that it is an applica-
tion very suitable for testing their performance when tracking
different frequencies. These results can be extended to other
single-phase and three-phase applications where a perfect track-
ing/rejection of references/disturbances is sought through reso-
nant controllers. The goal of the laboratory/experimental setup
is to prove the following main theoretical approaches.

1) A comparison among discretization methods, testing
the ability of different strategies to provide a good
tracking/rejection of harmonic references/disturbances by
means of an accurate mapping of the resonant poles
(Section VII-A).

2) Effectiveness of the discrete-time delay compensation pro-
vided by FOH, Tustin with prewarping, and impulse in-
variant. It is proved by checking the performance of reso-
nant controllers tuned at high values of ωo (Section VII-B).

3) Considering online frequency adaptation, assessment
of computational burden difference between most
accurate implementations and those that do not require
online calculation of explicit trigonometric functions
(Section VII-C).

The tests carried out in order to prove 1) and 2) are per-
formed without online frequency adaptation, since the aspect
under study is the accuracy of the implementations when the
input frequency is fixed and well known, so the resonant con-
trollers are implemented with constant coefficients (calculated
offline). Actually, ωo should have a fixed value during these tests,
so the different implementations are compared under the same
conditions. Frequency-adaptive resonant controllers are imple-
mented for the last experiment, which provides a comparison in
terms of computational effort.

It is not intended to provide a comparison between HPR(s)
and HVPI(s) controllers. This kind of study has already been
presented in other papers [17], [23].

Fig. 11 shows the tested single-phase APF prototype. The
APF is an insulated gate bipolar transistor (IGBT) based volt-
age source converter (VSC) connected to the point of common
coupling (PCC) through the interfacing inductor Lf . The equiv-
alent series resistance (Rf ) of this inductor has been measured
and taken into account in the modeling of the plant. A pro-
grammable load (Hocherl & Hackl ZSAC426) is connected in
parallel to the APF. This load allows to specify the demanded
current harmonic content up to the 15th harmonic. Table IX
shows the values of the power circuit components. The vari-
able fsw is the IGBTs switching frequency. A programmable ac
source (Chroma 61501) has been employed.

The control has been implemented in a prototyping platform
(dSpace DS1104), which includes a Power PC MPC8240 (PPC)
and a Texas Instruments TMS320F240 DSP. The PPC is a 64-bit

Fig. 11. APF laboratory prototype circuit and controller.

TABLE IX
POWER CIRCUIT VALUES

floating-point processor with a CPU clock running at 250 MHz.
The algorithms are designed using MATLAB/Simulink and the
real-time interface (RTI) toolbox. The PPC executes all tasks,
but the pulsewidth modulation (PWM) signals generation, which
is done by the DSP. Some blocks, such as the moving average fil-
ters of the extraction algorithm and the frequency-adaptive reso-
nant controllers, have been implemented by S-functions written
in C language to optimize the execution times, as done in [16].

The discrete-time solver has been set at fs = 10 kHz. The
goals of the digital controller are to compensate for the selected
load harmonic currents (iLh ) and to keep constant the dc-link
voltage (Vdc). The proposed controller works as follows.

1) The instantaneous load current (iL ) is detected.
2) The reference of the harmonic currents to compensate

(iLh ) are extracted from iL by means of digital signal
processing. The method that is proposed in [34] to iden-
tify the fundamental current (iL1) has been employed, so
iLh = iL − iL1 .

3) The reference fundamental current (i∗f1
), calculated to

maintain Vdc , is obtained by means of a PI controller
and the in-phase signal from the phase-locked loop (PLL)
(θ̂1) [35].

4) The total reference of current for the APF (if ∗) is calcu-
lated as iLh + i∗f1

.
5) The current regulator [Gc(z)] assures that ∆if = i∗f − if

is zero in steady state.
6) The PLL estimates the fundamental frequency (ω̂1) in

order to adapt the harmonic identification algorithm and,
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Fig. 12. Current control closed loop.

in the tests of computational burden, also the resonant
controllers.

The resonant controllers are implemented in the stationary
frame, which is a common choice due to the perfect tracking
of both sequences and the lack of coordinates transformations
[1], [13], [14], [20]–[22]. It is also an interesting alternative to
implement them in SRF, as done in [7], [15]–[17], [22], [23].
However, the effects of discretization are analogous in both
cases, so only one of these approaches is needed in this paper.

A. Modeling of the Plant

Fig. 12 depicts the current control system with the PR con-
troller and the model of the plant. The discrete-time model of
the plant [GP L (z)] has been modeled including the computa-
tional delay (z−1) and the PWM converter operation [36], [37].
The PWM converter reference (m) is kept constant over each
sampling interval, so the power converter can be assumed to be a
ZOH circuit. Therefore, the inductive filter discrete-time model
[Gf (z)] should be obtained through the ZOH method [36], [37]:

Gf (s) =
1

sLf + Rf

zoh→Gf (z) =
1

Rf

1 − e−Rf Ts /Lf

z − e−Rf Ts /Lf
. (7)

B. Tuning of HPR Controllers

The controller HPR
k (s) for each harmonic k can be defined

as

HPR
k (s) = KPk

+ KIk
R1

k (s). (8)

The individual KPk
gains may be added, so only a single

gain KPT
should be adjusted [14], [17]. In this manner, when

the current controller Gc(s) is based on HPR(s), it takes the
form

Gc(s) =
n∑

k=1,3,...

HPR
k (s) = KPT

+
n∑

k=1,3,...

KIk
R1

k (s) (9)

with n being the highest harmonic order to be compensated.
Two values of n will be employed in the experiments: 15 and
61.

The parameters of HPR
k can be tuned according to the open-

loop frequency response [14]. The proportional gain KPT
es-

tablishes the frequency at which the gain is 0 dB, if no resonant
controllers are considered. Thus, its value is very related to the
stability of the system [14], and it is tuned to provide an ade-
quate phase margin. Furthermore, resonant controllers without
delay compensation should be only included within the band-
width given by KPT

; otherwise, stability is not assured [30]. On

Fig. 13. Open-loop Bode diagram of Gc (z)GP L (z) for PR controllers with
n = 15.

Fig. 14. Spectrum of programmed load current iL to test the effect of resonant
poles displacement [both for HPR (z) and HVPI (z)]. THD= 31.9%.

the other hand, the transient time is reduced as the proportional
gain increases [14].

A value of KPT
= 32 has been selected so that a bandwidth of

about 1 kHz is achieved. Consequently, it is possible to employ
resonant controllers without delay compensation for n = 15,
which is necessary for some of the experiments. Fig. 13 de-
picts the open-loop frequency response obtained after the tuning
process for n = 15. The phase margin results in 34◦, assuring
stability.

Concerning KIk
tuning, the main aspect that should be con-

sidered is the compromise between selective filtering and dy-
namic response [30], [38]. An identical integral gain has been
selected for each harmonic k in order to achieve the same
bandwidth for all of them. In this manner, an equivalent trade-
off between selectivity and transient response is assured for
each resonant frequency. Indeed, it is a common practice to
tune PR controllers with identical gains KIk

for all harmon-
ics [14], [24], [39]. Furthermore, as the selectivity becomes
independent of the harmonic order, it will be possible to assess
in the experiments the dependence of the resonance deviation
on k, which is one of the main objectives of the experiments.
Taking into account all these aspects, a value of KIk

= 2000
has been selected. It can be mentioned that this is equivalent to
an integral gain of 1000 in an SRF PI controller [21].
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Fig. 15. Steady-state currents and spectrum of isrc for different discrete implementations of HPR (s), with n = 15 and f1 = 50 Hz. Ch2 is if , Ch3 is isrc , and
Ch4 is iL . (a) Steady-state currents for only proportional current controller. (b) Spectrum of isrc shown in Fig. 15(a). THD = 20.9%. (c) Steady-state currents for
HPR

t (z) implementation. (d) Spectrum of isrc shown in Fig. 15(c). THD = 18.5%. (e) Steady-state currents for HPR
f&b (z) implementation. (f) Spectrum of isrc

shown in Fig. 15(e). THD = 11.1%. (g) Steady-state currents for HPR
im p (z) implementation. (h) Spectrum of isrc shown in Fig. 15(g). THD = 5.66%.



1706 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 25, NO. 7, JULY 2010

Fig. 16. Steady-state currents and spectrum of isrc for different discrete implementations of HVPI (s), with n = 15 and f1 = 50 Hz. Ch2 is if , Ch3 is isrc and
Ch4 is iL . (a) Steady-state currents for HVPI

t−t (z). (b) Spectrum of isrc shown in Fig. 16(a). THD = 18.2%. (c) Steady-state currents for HVPI
f&b (z) implementation.

(d) Spectrum of isrc shown in Fig. 15(c). THD = 12.7%. (e) Steady-state currents for HVPI
im p−tp (z). (f) Spectrum of isrc shown in Fig. 15(e). THD = 4.89%.

It should be remarked that the resonant peak at the fundamen-
tal component provides total disturbance (fundamental compo-
nent of Vsrc) rejection, so a feedforward compensation is not
needed [13], [24].

C. Tuning of HVPI Controllers

The individual controller HVPI
k (s) for each harmonic k is

expressed as

HVPI
k (s) = KPk

R2
k (s) + KIk

R1
k (s). (10)

The total current controller is

Gc(s) =
n∑

k=1,3,...

HVPI
k (s). (11)

The gains of HVPI
k have been tuned according to the indica-

tions exposed in [16] and [17].
1) In order to cancel the cross coupling caused by the R–L

filter, KIk
is selected as KPk

Rf /Lf .
2) There is a direct relation between KPk

and the width of the
peaks, determining the selectivity and the transient time.
This parameter should be set in order to provide a given
bandwidth centered at the resonant frequencies. KPk

=
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Fig. 17. Spectrum of programmed load current iL for the tests of discrete-time
delay compensation.

0.5 and KIk
= 50 have been chosen to achieve a closed-

loop bandwidth of 16 Hz at each resonance frequency kω1 ,
so an adequate tradeoff between selectivity and transient
response is achieved.

3) So as to obtain the same bandwidth for all controllers,
identical gains KPk

and KIk
are selected for each har-

monic k, as proposed in [16] and [17]. Moreover, it is
necessary to employ the same gains for each resonance
frequency in order to appreciate how the resonant poles
deviation increases with the harmonic order.

VII. EXPERIMENTAL RESULTS

A. Comparison of Steady-State Error Provided by Discrete-
Time Implementations

The load current iL has been programmed with uniform har-
monic spectrum for odd values between the 3rd and 15th order,
as depicted in Fig. 14. It should be noted that THD-F, which
means referred to fundamental, corresponds with the standard
definition of THD. In this manner, the uniform spectrum leads
to a THD of 31.9%. In most real applications, low harmonics
exhibit higher amplitude, but in this paper, iL has been chosen
in this manner to make possible the comparison of the perfor-
mance as the harmonic order rises. The number of harmonics
could be increased by performing compensation of the compu-
tational delay, but it is not done in this test due to the following
reasons.

1) Results obtained with n = 15 will be enough to prove
the effect of discretization on the resonant frequency. The
error expected for low-order harmonics is already consid-
erable (exposed in Section III-A), so testing resonant con-
trollers tuned for higher harmonics would not contribute
any additional information.

2) If higher harmonics were to be compensated, delay com-
pensation should be implemented in order to assure sta-
bility of the resonant terms. However, as exposed in Sec-
tion IV, this would change the form of the original con-
tinuous transfer function to (4); thus, additional effects of
the discretization would also affect the performance apart
from the resonant poles displacement.

1) Steady-State Error of HPR(s) Discretizations: Fig. 15
illustrates steady-state currents and corresponding spectrum of

Fig. 18. Steady-state currents and spectrum of isrc when implementing digital
compensation of the computational delay, with N = 2, n = 61, and f1 =
50 Hz. Ch2 is if , Ch3 is isrc , and Ch4 is iL . (a) Steady-state currents for

HPR d

im p (z). (b) Spectrum of isrc shown in Fig. 18(b). (c) Steady-state currents

for HVPId

im p−tp (z). (d) Spectrum of isrc shown in Fig. 18(d).
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TABLE X
IMPLEMENTATION CODE FOR THE TESTS OF COMPUTATIONAL BURDEN

isrc for different discrete-time implementations of the PR current
controller [HPR(s)]. As expected from the theoretical analysis
provided in Section III-A, the steady-state error caused by the
pole displacement of the implementations of groups C and D is
considerable and increases with the harmonic order, as shown
in Fig. 15(d) and (f). Actually, for high-order harmonics, the
isrc Fourier spectrum achieved by R1

f&b(z) and R1
t (z) schemes

is more similar to the one provided by a simple proportional
controller [see Fig. 15(b)] than to the harmonic content achieved
by R1

imp(z) [see Fig. 15(h)].
The latter provides almost complete rejection of load cur-

rent harmonics, proving the accuracy of its resonant peaks
locations. The THD values also reflect the large performance
difference: its value for R1

f&b(z) (THD = 11.1%) and R1
t (z)

(THD = 18.5%), respectively, doubles and triples that of
R1

imp(z) (THD = 5.66%). Therefore, it is proved the superi-
ority of group E methods for R1(z) implementation in terms of
accuracy.

2) Steady-State Error of HVPI(s) Discretizations: Fig. 16
compares the steady-state currents and isrc spectrum obtained
by the different stable groups of discretization methods when
applied to HVPI(s): C, D, and E. As shown in Fig. 16(e),
group E achieves a high rejection of all programmed harmon-
ics between k = 3 and k = 15, due to an accurate mapping of
the resonant poles. On the contrary, the other groups fail to
track with unitary gain the harmonic references. They produce
a difference in the resonant frequency that increases with the
harmonic order, thus causing steady-state error. This fact can
be also appreciated in the THD values: it rises from 4.89% to
12.7% and 18.2% (groups E, D, and C, respectively). In sum, E
techniques have been proved to provide a superior performance
for HVPI(s) controllers in terms of resonant poles accuracy.

B. Test of Discrete-Time Delay Compensation

The effectiveness of the digital implementations of the delay
compensation will be tested by checking their stability when
compensating high-order harmonics. For this reason, IL has
been programmed as a square wave with rise time and fall time of
39 µs. It contains a very demanding spectrum of odd harmonics
up to high frequencies. Its harmonic content can be observed in
Fig. 17. In these experiments, the fast Fourier transform (FFT)
tool of the oscilloscope math mode has been employed instead

of the application used in the previous tests. This is because
of the fact that the latter is only able to show harmonics up to
k = 49, whereas the former is only limited by the bandwidth of
the oscilloscope.

The number of samples compensated has been set at N = 2,
since it was concluded in [23] to be the optimum value.

Resonant controllers will be tuned at each odd harmonic
between k = 1 and k = n = 61. Higher frequencies could be
tracked, but the precision would become really low, as the num-
ber of samples in a period gets too small. In any case, n = 61
is considered enough for proving robustness of current con-
trollers [17].

It should be noted that the aim of the experiment is not a pro-
posal for an industrial prototype, but to provide a study about
the accuracy of the resonant poles locations and the delay com-
pensation achieved by several discretization methods. The main
reason to implement resonant controllers tuned at such high fre-
quencies is to serve as an useful test for applications in which
tracking of high frequencies is common, such as aeronautic
APFs or torque ripple minimization in high-speed PM drives.
Obviously, so many resonant controllers are not required in these
cases, but the results provided confirm that there would be no
problems of accuracy when few resonant controllers tuned at
high frequencies are implemented.

1) HPR(z) Delay Compensation: If a delay compensation
method is not included, HPR(s) controllers are inherently un-
stable starting from the 19th harmonic [17], [23]. Fig. 18(a)
shows the steady-state currents obtained by R1d

imp(z) implemen-
tation, proving its stability. Therefore, it can be stated that the
discrete-time delay compensation fulfills its mission of provid-
ing stability to the resonant controllers. The same results have
been obtained by R1d

foh(z) and R1d

tp (z).
Moreover, from the spectrum of isrc shown in Fig. 18(b), it

can be also concluded that the mapping of the resonant poles of
group E is still accurate for such high values of ωo . Indeed, a
similar amplitude is achieved for the higher values of k when
compared to the lower. It should be remarked that the harmonic
components are not entirely eliminated mainly due to the error
of the current sensors.

It should be also noted that the discretization of the controllers
including the computational delay does not affect the denomi-
nator of each group, so the resonant poles will be the same for
each group indistinctly if the delay compensation is included or
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Fig. 19. Steady-state currents and spectrum of isrc for frequency-adaptive implementations of Table X, with n = 15 and f1 = 52 Hz. Ch2 is if , Ch3 is isrc ,
and Ch4 is iL . (a) Steady-state currents for HPR

f&b (z) implementation. (b) Spectrum of isrc shown in Fig. 19(a). THD = 11.5%. (c) Steady-state currents for
HPR

im p (z) implementation. (d) Spectrum of isrc shown in Fig. 19(c). THD = 5.67%. (e) Steady-state currents for HVPI
f&b (z) implementation. (f) Spectrum of isrc

shown in Fig. 19(e). THD = 13.7%. (g) Steady-state currents for HVPI
im p−tp (z) implementation. (h) Spectrum of isrc shown in Fig. 19(g). THD = 4.88%.
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not. That is the reason why these experimental results can be
also considered as an extension of the results of Section VII-A,
in the sense of proving the correct mapping of the poles for
harmonics higher than k = 15.

The average execution time of this experiment has been
24.6 µs (whole control). The PR current control, which includes
31 resonant controllers with fixed coefficients, employs 15.2 µs.

2) HVPI(z) Delay Compensation: The VPI controller is
not able to compensate harmonics higher than 37th unless de-
lay compensation is implemented [17]. As can be observed in
Fig. 18(c), the proposed implementation of digital delay com-
pensation for HVPI(z) is capable of providing stability even to
really high harmonic orders. Therefore, its suitability has been
satisfactorily proved. The results shown in these figures have
been obtained with R1d

imp(z) and R2d

tp (z), but identical results

have been also achieved with R1d

foh(z), R1d

tp (z), R2d

foh(z), and

R2d

tp (z).
Fig. 18(d) also demonstrates the accuracy of the resonant

poles locations provided by group E in the case of HVPId

(z).
The average execution time of this experiment has been

25.9 µs (whole control). The PR current control employs
16.5µs. It should be noted that these execution times are quite re-
duced due to the powerful microprocessor employed (250 MHz
clock rate) and the fact that constant coefficients (calculated of-
fline) were employed in the resonant controllers. The effect of
online calculation of coefficients involving trigonometric func-
tions is assessed in the next section.

C. Comparison of Computational Burden

In the previous experiments, the discretization methods that
provide the best accuracy have been established. However, these
implementations require online computation of trigonometric
functions, as opposed to the schemes based on two integrators.
In this manner, it can be said that there exists a tradeoff between
accuracy and resource-consumption, when frequency adaptation
is required. Therefore, it is interesting to assess the difference
in execution time between groups D and E implementations.

One implementation of group D and one of group E have
been chosen, both for the PR and the VPI controllers, to per-
form the comparison of execution time: HPR

f&b , HPR
imp , HVPI

f&b ,
and HVPI

imp−tp . Results with other implementations of the same
groups would be very similar due to the fact that the most criti-
cal operation is the cosine calculation, which is necessary in all
methods of group E and none of group D. The most significant
instructions of the code of the tested controllers (S-functions in
C language) are shown in Table X.

Seven resonant controllers of each type are implemented
(n = 15), and the load current is programmed with a uni-
form spectrum up to the 15th harmonic, as done in the exper-
iments of Section VII-A. Fig. 19 depicts the currents obtained
by the frequency-adaptive implementations of Table X, with
f1 = 52 Hz. Fig. 19 proves the effectiveness of Table X code
to implement the original transfer functions even in presence of
frequency deviations.

Table XI shows the average execution times of Table X con-
trollers running in steady state. These results corroborate the

TABLE XI
EXECUTION TIME OF THE CONTROLLERS IN THE TESTS

OF STEADY-STATE ERROR

observations posed in Section V concerning the simplicity of
the implementations based on two integrators. From Table XI,
the schemes of group D permit to reduce the execution time
by a factor of approximately 4. This result is explained by the
fact that the RTI implements, by default, sine/cosine terms by
means of high order (15th) Taylor series, which demand a lot
of PPC clock cycles (low-level instructions); whereas, methods
based on two discrete integrators approximate the cosine func-
tion as a Taylor series of second order (as shown in Table III)
with much less low-level instructions. Consequently, the best
tradeoff depends on available resources and required accuracy.

VIII. CONCLUSION

An exhaustive analysis of the importance of the discrete-time
implementations of resonant controllers is contributed in this
paper. Some important outcomes should be taken into account
when implementing digital resonant controllers.

1) Forward Euler and backward Euler methods are not suit-
able for discretizing resonant controllers, since they map
the poles out of the unit circumference. On the other hand,
the rest of the implementations are able to achieve infinite
gain in open-loop.

2) The discrete-time implementations based on the Tustin
transformation [28] and the ones based on two integra-
tors [8], [13], [15], [23]–[25] produce a significant steady-
state error due to resonant poles displacement. This error
increases with the sampling period and the harmonic or-
der. Therefore, they are not recommended for applications
in which high frequencies should be tracked. However,
this deviation can be negligible when low frequencies
(low ωoTs), such as fundamental components and low-
order harmonics, are tracked. Furthermore, the schemes
based on two integrators, which approximate a cosine
function by a second-order Taylor series, permit to reduce
the computational burden with respect to more accurate
implementations. Consequently, their simplicity may be
advantageous in cases in which their steady-state error is
acceptable and frequency adaptation is required.

3) Implementations obtained by ZOH, FOH [30], impulse
invariant, Tustin with prewarping [29], [31], and ZPM
provide an accurate location of the resonant peaks even
for high frequencies and reduced sampling rates. Conse-
quently, they are more suitable to achieve zero steady-
state error. When frequency adaptation is implemented,
the online calculation of trigonometric functions is re-
quired, which may be very resource-consuming.
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4) Concerning PR controllers, the discrete transfer function
obtained by the impulse invariant method is the most op-
timal among these methods, since its zeros distribution
causes less phase lag. Thus, it improves stability. On the
other hand, ZOH is the most unfavorable of them, because
it introduces a delay near the resonant frequency.

5) Concerning VPI controllers, they can be separated in two
resonant terms, one of which is identical to the reso-
nant term included in PR controllers. Therefore, the state-
ments from the previous point can be also applied to this
equivalent resonant term. In relation with the other res-
onant term included in the VPI controller, either FOH,
Tustin with prewarping, or ZPM are adequate options.
On the contrary, ZOH and impulse invariant may cause
instability.

6) The methods that provide an effective discrete-time im-
plementation of the delay compensation are FOH, Tustin
with prewarping, and impulse invariant for either resonant
term. Other techniques can easily lead to instability due
to the large difference they produce in the phase response
near the resonant frequency.

Experimental results obtained with an APF laboratory pro-
totype validate the most important outcomes of the theoretical
analysis. In sum, it has been proved that the choice of the dis-
cretization method is a crucial aspect for resonant controllers,
and the most suitable alternatives have been established. The
effectiveness of the proposed optimum implementations of the
digital delay compensation have been tested by compensating
odd harmonics up to the 61th order.
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