

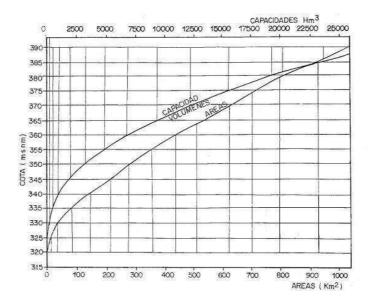
OBRAS HIDRÁULICAS (CI457) Carrera de Ingeniería Civil Plan 2013

Trabajo Pra	áctico Nº 07	PARAMETROS EN PR	
Fecha de dictado	15-10-2025	Fecha presentación	24-10-2025

1. Calcular el "Fetch Efectivo" en función de los datos obtenidos para la figura:

$\alpha^{\rm o}$	Xi (km)	α^{o}	Xi (km)
42	2,23		
36	2,21	6	7,86
30	2,92	12	7,54
24	3,23	18	2,12
18	4,25	24	1,71
12	4,58	30	1,24
6	5,45	36	1,24
0	8,02	42	1,22

Cátedra: Obras Hidráulicas CLASES PRÁCTICAS



OBRAS HIDRÁULICAS (CI457)

Carrera de Ingeniería Civil Plan 2013

1. Calcular e		tivo" en funcio para la figura:		s obtenidos
(α	X _i	Cos(a)	X_i .Cos ² (α)
0	rad	km	1	km
42	0.733	2.23	0.743	1.232
36	0.628	2.21	0.809	1.446
30	0.524	2.92	0.866	2.190
24	0.419	3.23	0.914	2.696
18	0.314	4.25	0.951	3.844
12	0.209	4.58	0.978	4.382
6	0.105	5.45	0.995	5.390
0	0.000	8.02	1.000	8.020
6	0.105	7.86	0.995	7.774
12	0.209	7.54	0.978	7.214
18	0.314	2.12	0.951	1.918
24	0.419	1.71	0.914	1.427
30	0.524	1.24	0.866	0.930
36	0.628	1.24	0.809	0.812
42	0.733	1.22	0.743	0.674
	Totales		13.511	49.948
		Fe		
		km		
		3.70		

2. Calcular la Altura Total y las diferentes alturas de operación, de una presa cuyo embalse corresponde a la relación cota-volumen-área de la siguiente figura:

OBRAS HIDRÁULICAS (CI457)

Carrera de Ingeniería Civil Plan 2013

Se sabe que la altura mínima de carga para las turbinas es de 60m.

Se tiene una descarga anual de sólidos de 24x10⁶ t/año y el peso específico del sedimento es de 1,17 t/m³. El caudal medio del río es de 24.000 Hm³/año y el volumen estimado de embalse es de 20.000 Hm³.

El nivel normal de crecida es de 382 msnm y el extraordinario de 385,50 msnm.

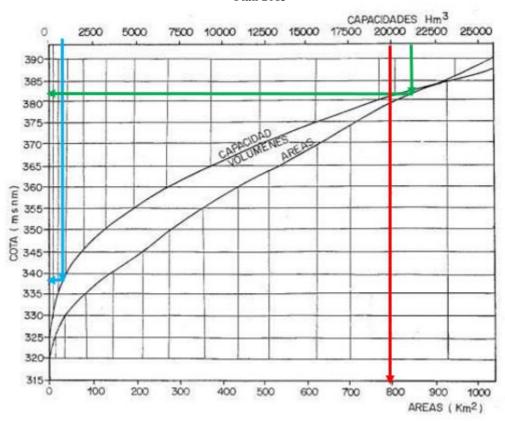
Calcular el Borde Libre si se tienen los siguientes datos:

- V = 100 km/h (velocidad del viento) F = 60 km (fetch efectivo)
- Vol. Embalse = 20.000 Hm³ (Correspondiente a nivel de embalse máximo)

Formulas y Tablas Útiles:

Eficiencias de Atrape en Embalses (η_A)

V _E /V _{DR}	BRUNE	CHURCHILL
0,01	0,45	0,47
0,10	0,86	0,72
1,00	0,98	0,88
10,00	0,98	0,96

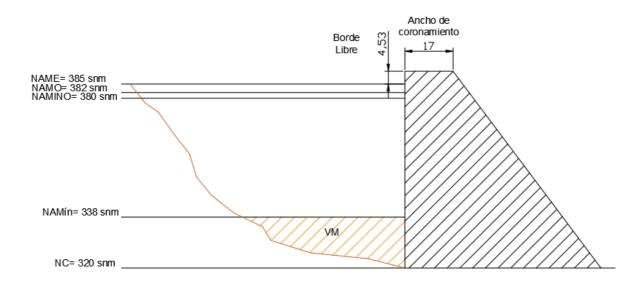

Cátedra: Obras Hidráulicas
CLASES PRÁCTICAS

OBRAS HIDRÁULICAS (C1457)

Carrera de Ingeniería Civil Plan 2013

\ A.	Tablas de	Eficiencia					
V _E /V _{DR}	Brune	Churchill	Caudal Medio del río	Volumen de embalse	Relación	Eficiencia Obten	ida de tabla
0.01	0.45	0.47	40.110	ombaioo		Brune	Churchill
0.1	0.86	0.72	V_{DR}	V _E	V _E /VDR	nB	nC
1	0.98	0.88	Hm³/año	Hm ³	1	-	-
10	0.98	0.96	24000	20000	0.833	0.96	0.850
Descarga Anual de Solidos	Peso Esp de Sedimento	Vol. Muerto	Vida Útil	Volumen An	ual Sólidos	Eficiencia Adoptada	
D _{AS}	γ	VM	VU	V,	AS	n	
tn/año	tn/m ³	Hm ³	años	m³/año	hm³/año	-	
24000000	1.17	787.69	40	20512820.51	20.51	0.96	
-	-	V _U .V _{AS} .n	-	D _A	s/γ	-	
Nivel Normal de Crecida	Nivel Estraord. de Crecida	Nivel de agua mínimo	Nivel de cimentación	Altura de carga mín. para turbinas	Nivel de Agua Mín. de Operación		
NAMO	NAME	NAMín	NC	ACM	NAMINO		
msnm	msnm	m	m	m	m		
382	385	338	320	60	380		

<u>Cátedra</u>: Obras Hidráulicas <u>CLASES PRÁCTICAS</u>



OBRAS HIDRÁULICAS (CI457)

Carrera de Ingeniería Civil Plan 2013

Borde Libre	Altura de la ola	Set-Up	Run-Up	Altura media del embalse	Área Embalsada	Altura total de	la presa
BL	H1	H2	Н3	Hm	AE	H _p	
m	m	m	m	m	km²	m	pies
4.53	2.59	0.38	1.55	25.16	795	69.53	228.35
Velocidad del viento	Fetch de nivel máx.			BL[m] = I	$H_1 + H_2 + H_3$		
Vel	F		# [m] = 0.0322	$v_7 \vee \left[\frac{km}{v} \right] \vee$	$\sqrt{E[km]} + 0.76$	$0-0.24 \times \sqrt[4]{F[km]}$	
km/h	km	•	$H_1[H_1] = 0,0322$	$V \wedge \sqrt{V \left[h \right]} \wedge$	(I [kiii] + 0,70	7 - 0,24 × Vr [km]	
100	60		ri	km1 ²			
			$H_2[m] = \frac{V \left[\frac{V}{62} \right]}{62}$	mt J	; $h_m[m]$ 0,6 * $H_1[m]$	$= \frac{V_E [Hm^3]}{A_{inund} [km^2]}$	

- 3. Determinar el Ancho de Coronamiento (W) para la presa del punto anterior, por las diferentes fórmulas empíricas planteadas. Sabiendo que el ancho mínimo no debe ser inferior a 5m.
 - \circ W = H/5 + 10 (USBR)
 - \circ W = 3,6 x H^{0.5} 3 (Código Japón)

<u>Cátedra</u>: Obras Hidráulicas <u>CLASES PRÁCTICAS</u>

OBRAS HIDRÁULICAS (C1457)

- Carrera de Ingeniería Civil
 Plan 2013

 O $W = (1+F) \times b \rightarrow F = Factor de Sismicidad (F \rightarrow 25\%: Riesgo Alto) b = -36 \times 10^{-10}$ $H^{-0.2} + 25$ (autor Galvez, Vidal)
 - H (pies) = Altura Máxima
 - W (pies) = Ancho de Coronamiento

Crite	erios	USBR	Cód. Japón	Galvez Vidal
W	pies	55.67	51.40	16.06
VV	m	16.93	15.63	4.88
Altura total	de la presa	Parámetro	F de Sismic.	
Н	lp	b	F	
m	pies	pies	-	
69.53	228.35	12.85	25	

Cátedra: Obras Hidráulicas CLASES PRÁCTICAS