

Facultad de Ingeniería

Departamento de Ingeniería Electrónica Laboratorio AI-00-25 [IC313]-LIVEWIRE

C 313- Materiales y Dispositivos Electrónicos Palabras claves: resistores, simulación computacional, LIVEWIRE, PCB

AI-00-25[IC313]-LIVEWIRE (Actividad Individual)

Objetivos:

Familiarizarse con herramientas de simulación como sustitutas de instrumentos de medición y visualización.

Simular formas de ondas y circuitos en Corriente Continua CC y Corriente Alterna AC.

Descarga del Programa de simulación computacional LIVEWIRE y PCB Wizard

Procedimiento:

1. Ingresar al curso *EDUCATRÓNICA* dentro del aula virtual Moodle. Accediendo al curso con la contraseña: EDU2024, O <u>https://aulavirtual.fio.unam.edu.ar/course/view.php?id=219¬ifyeditingon=1</u>

2. Bajar el software **LIVEWIRE y PCB Wizard**. Clic en el icono de la figura

3. guardar el archivo en una carpeta dentro de la asignatura y descomprimirlo. (Debería hacerlo automático si están los programas correspondientes). Dentro de la carpeta les muestra el icono de **Livewire.exe**, como se muestra en la Fig.1

Organizar 🔻 📑 Abrir 🔻	Grabar Nueva carpeta		8==	- 🔟 🔞		
🔆 Favoritos	Nombre	Fecha de modifica	Tipo	Tamaño		
🐌 Descargas	Books	17/04/2012 08:38 a	Carpeta de archivos			
👯 Dropbox	= 🔒 Examples	17/04/2012 08:39 a	Carpeta de archivos			
MEGA	Settings	17/04/2012 08:39 a	Carpeta de archivos		License wri	7871072004 12:00
🧱 Escritorio	DsgSvr10.dll	28/10/2004 12:00 a	Extensión de la apl	242		20/10/2004 12:00
🔛 Sitios recientes	Ilda32.dll	08/11/1997 02:44	Extensión de la apl	228	Livewire eve	06/02/2005 06:14
😡 UNIR	📅 Library.dat	28/10/2004 12:00 a	GOM Media files(90	LIVEWIIE.EXE	00/05/2005 00:14
	License.wri	28/10/2004 12:00 a	Archivo WRI	7	Deed Maxwi	29/10/2004 12:00
对 Bibliotecas	S. Livewire.exe	06/03/2005 06:14	Aplicación	4.261 ND	Read Me.wri	28/10/2004 12:00
Documentos	Read Me.wri	28/10/2004 12:00 a	Archivo WRI	17 KB		
🔚 Imágenes	issce5232.dll	14/06/2002 12:00 a	Extensión de la apl	160 KB		
J Música	*					

4. Hacer clic en **Livewire.exe** y se abre el programa de simulación, mostrando la pantalla de inicio como ilustra la Fig. 2.

5. Hacer clic en el icono grande Livewire y se abre el programa de simulación

6. Hacer clic en Gallery y se tiene acceso a la librería, de donde se arrastran los componentes eléctricos, electrónicos, instrumentos, etc. a utilizar en el circuito. Fig.3.

Departamento de Ingeniería Electrónica Laboratorio AI-00-25 [IC313]-LIVEWIRE

C 313- Materiales y Dispositivos Electrónicos Palabras claves: resistores, simulación computacional, LIVEWIRE, PCB

Fig.2: Livewire.exe Pantalla de inicio

Gallery

Gallery (Ctrl+F2)

Gallery

Power Supplies

9v

+

9v

+

Battery

1.5v

+

Cell

9v

Ground

9v

Voltage Rail

Fig.3: Livewire Pantalla de trabajo Gallery o librería

Departamento de Ingeniería Electrónica Laboratorio AI-00-25 [IC313]-LIVEWIRE

C 313- Materiales y Dispositivos Electrónicos Palabras claves: resistores, simulación computacional, LIVEWIRE, PCB

Actividad Práctica con el Simulador Livewire

1. Simular al menos uno de los ítems del punto **4** de la actividad **01-25-Resistores – Problemas.** (Presentar esta simulación en ese trabajo).

Ejemplo de solución

1.1. Busco el enunciado del punto 4.

4. Calcule la resistencia limitadora para las siguientes fuentes de tensión y las cargas detalladas:

Fuente	Corriente de carga		Tensión de carga		Resistencia (Ω)		Potencia (W)	
	Teórico	Adoptado	Teórico	Adoptado	Valor Teórico	Valor Adoptado	Valor Teórico	Valor Adoptado
12V	20mA		2V					
24V	16mA	15,86mA	5V	4.959V	1187.5Ω	1 200 Ω	0,304W	0,5W
5V	40mA		3V					
220V	100mA		4,5V					
6V	100mA		2V					

1.2. Busco La solución del ítem seleccionado (en este ejemplo el Ítem 2)

1.2.a. Calculo el valor del resistor de carga $R_{C2} = 312,5\Omega$ (estos son datos impuestos) Fig.4

1.2.b. Dibujo el circuito (manuscrito), planteo Kirchhoff y Ley de Ohm. Calculo la resistencia adaptadora de tensión y limitadora de corriente $R_{L2} = 1187.5\Omega$.

1.2.c. Calculo la potencia teórica que disipa el resistor limitador P_{RL2} = 0,304W

Departamento de Ingeniería Electrónica

C 313- Materiales y Dispositivos Electrónicos

Laboratorio AI-00-25 [IC313]-LIVEWIRE Palabras

Palabras claves: resistores, simulación computacional, LIVEWIRE, PCB

Fig.4: Calculo y planteo de la malla del circuito Cargo los datos obtenidos en la tabla 1.

1.3. Abrir el programa de simulación LIVEWIRE.

1.3.a. Con la librería seleccionar los componentes para armar circuitos como se indican en la **Fig.5a**.

1.3.b. Haciendo doble clic sobre cada componente, se le asigna sus parámetros (valor, Potencia, AC DC, Nombre, etc.).

1.3.c. Correr la simulación presionando el botón Run ► del menú.

1.3.d Tomar los datos de la simulación que se muestran en la **Fig.5b** y comparar con los del cálculo cargado en la tabla 1.

Departamento de Ingeniería Electrónica Laboratorio AI-00-25 [IC313]-LIVEWIRE C 313- Materiales y Dispositivos Electrónicos Palabras claves: resistores, simulación computacional, LIVEWIRE, PCB

1.4. Adopto un valor comercial de la serie E12 para el resistor RL2A.

Para adoptar un valor existen distintos criterios, como por ejemplo el de menor consumo, el más cercano, el de mayor potencia, etc. Esto depende de cada caso y de cada Ingeniero.

Para este caso por criterio del más cercano y de menor consumo adopto RL2A= 1200Ω

1.4 a. Recalculo los valores de tensiones y corrientes de la malla de la Fig. 4. Obteniendo:

VC2A= 4.959V; VRL2A= 19,041V; IC2A= IRL2A= 15,86mA

1.4 b. Ahora debo adoptar una potencia normalizada del resistor limitador. En primer lugar calculo la potencia disipada por el resistor limitador de valor adoptado **P**_{RL2At}= **0,302W**.

Al valor teórico de cálculo le aplicamos un factor de seguridad Fs= 1,5 y la potencia adoptada debe ser P_{RL2At} .Fs $\leq P_{RLA} = 0,5W = 1/2 W$

Cargo los datos obtenidos en la tabla 1

1.4 c. Con la librería del simulador seleccionar los componentes para armar circuitos como se indican en la **Fig.6a**.

1.4.d. Correr la simulación presionando el botón Run ► del menú.

1.4.e Tomar los datos de la simulación que se muestran en la **Fig.6b** y comparar con los del cálculo cargado en la tabla 1.

