MECANICA RACIONAL

LABORATORIO: Análisis de oscilaciones a partir de la utilización del Péndulo de Pohl

Año 2024

TIPOS DE OSCILACIONES A EXPERIMENTAR

1. OSCILACIONES LIBRES

- 1.1. Determinar el período de oscilación y la frecuencia natural en el caso no amortiguado.
- 1.2. Determinar la máxima amplitud unidireccional para distintos valores de amortiguación.
- 1.3. Determinación del amortiguamiento crítico.

CONCEPTOS TEÓRICOS

1. OSCILACIONES LIBRES

La amplitud de oscilación en función del tiempo está dada por la ecuación

$$\emptyset_{(t)} = \emptyset_0 * e^{-\gamma t} * \cos(\omega t) - \text{donde } \omega = \sqrt{\omega_0^2 - \gamma^2}$$

 \emptyset_0 = Angulo de desviación inicial.

 γ = Coeficiente de amortiguamiento

 ω_0 = Frecuencia natural del sistema

 ω = Pseudopulsación.

Según la relación existente entre el Coeficiente de amortiguamiento (γ) y la frecuencia natural (ω_0) tenemos:

- $\omega_0^2 > \gamma^2$ La ecuación anterior tiene solución real y el sistema, luego de un desplazamiento inicial, oscila en torno a su punto de equilibrio.
- $\omega_0^2 = \gamma^2$ Luego de un desplazamiento inicial el sistema retorna a su punto de equilibro sin realizar oscilaciones en torno a él y en el mínimo tiempo.
- $\omega_0^2 < \gamma^2$ Luego de un desplazamiento inicial el sistema retorna a su punto de equilibrio también en una forma asintótica

El Grado de amortiguamiento se define como $\xi = \frac{b}{b_{c}} = \frac{\gamma}{\omega_{0}}$

El Decremento Logarítmico viene dado por $\delta = \ln \frac{\phi_N}{\phi_{N+1}} = \frac{2\pi}{\omega_1} * \gamma = T * \gamma \; \text{ donde } \emptyset_N \text{ y } \emptyset_{N+1} \text{ son dos amplitudes consecutivas y } T \text{ es el período existente entre ellas}$

DESARROLLO DEL EXPERIMENTO

1. MEDICION DE OSCILACIONES LIBRES

1.1. SIN AMORTIGUAMIENTO: Medir Período

Se puede estimar el valor de la frecuencia natural (ω_0) , realizando la medición del periodo (T) del sistema. Para ello se procede de la siguiente manera:

- a) Se ubica el puntero en la posición 0 (cero) mediante el giro manual del motor.
- b) Se aparta el péndulo determinada amplitud y al liberarlo se cronometra el tiempo que tarda en realizar una oscilación completa, siendo este el periodo (T). Como alternativa se puede cronometrar n oscilaciones y obtener el período comoel promedio de ellas.
- c) Con este dato se calcula $\omega_0 = \frac{2\pi}{T}$

1.2. **CON AMORTIGUAMIENTOS:** Medir amplitudes consecutivas.

Para un cierto amortiguamiento, del cual no conocemos el valor pero sabemos que está relacionado a la corriente aplicada a la bobina, medimos amplitudes de "n" oscilaciones consecutivas, midiendo también el período de las mismas.

T I	Amplitud (divisiones)									
	1º	número de oscilación 1º 2º 3º 4º 5º 6º								
0,0 Amp										
0,2 Amp										
0,4 Amp										
0,6 Amp										
0,8 Amp										

Corriente (Amp)	\emptyset_N (Div)	\emptyset_{N+1} (Div)	T(s)	$\delta = \ln \frac{\emptyset_N}{\emptyset_{N+1}}$	$\delta \cong 2\pi * \xi$
0,0					
0,2					
0,4					
0,6					
0,8					

2. OSCILACIONES FORZADAS

- 2.2. Determinar y graficar las curvas de resonancia para diferentes grados de amortiguamiento.
- 2.3. La frecuencia de resonancia será determinada y comparada con los valores de la frecuencia de resonancia obtenidos previamente.

CONCEPTOS TEÓRICOS

2. OSCILACIONES FORZADAS

Las características de la fuerza forzadora juntamente características propias del sistema definirán al movimiento. La amplitud de oscilación en función del tiempo está dada por la ecuación

$$\emptyset_{(t)} = \emptyset_0 * \operatorname{sen}(\omega t - \psi) - \operatorname{donde} \ \omega = \sqrt{{\omega_0}^2 - \gamma^2}$$

DESARROLLO DEL EXPERIMENTO

- 2. MEDICION DE OSCILACIONES FORZADAS Obtener la curva de resonancia.
- 2.1. Se fija una frecuencia de oscilación del motor del orden cercano a la frecuencia natural del sistema, a fin de tener valores representativos y se le da un definido con un grado de amortiguación, luego de estabilizado el sistema se mide la amplitud Se recomiendan los siguientes pasos:
 - 1. Fijar y mantener una frecuencia del motor menor a la frecuencia natural del sistema.
 - **a.** Fijar una amortiguación dada por los 0,8 Amperes y graficar la amplitud conseguida con ese régimen.
 - b. Disminuir la amortiquación a los 0,6 Amperes y graficar la amplitud consequida
 - c. Disminuir la amortiguación a los 0,4 Amperes y graficar la amplitud conseguida.
 - d. Disminuir la amortiguación a los 0,2 Amperes y graficar la amplitud conseguida.
 - e. Quitar la amortiguación y graficar la amplitud conseguida.
 - 2. Fijar y mantener una frecuencia del motor superior a la anterior.
 - a. Repetir los pasos a, b, c, d y del punto 1.

Seguir incrementando la frecuencia del motor de acuerdo a los pasos anteriores. Cuanto más pequeños sean los incrementos de frecuencia del motor más notable será la curva deresonancia.

	Amplitud (divisiones)												
		Período											
	T1=	S	T2=	S	T3=	s T	1= 8	T5	=	s	T6=	S	
0,8 Amp													
0,6 Amp													
0,4 Amp													
0,2 Amp													
0,0 Amp													