

## Mecánica Racional

TP Nº 4: DINAMICA DE LA PARTICULA PARTE A y B

**AÑO 2024** 

## **Ejercicios Propuestos**

**Ejercicio** N°1. Una carga pende de un montacargas. Determinar el ángulo  $\theta$  que forma el cable que soporta la carga con la vertical, cuando el montacargas se mueve con una aceleración de  $\mathbf{a}_c$  hacia la derecha.

**Ejercicio Nº2.** Un bloque de 98 kg de peso se somete a la acción de una fuerza P constante de 60 kg. el valor de la fuerza de rozamiento entre el bloque y el piso es función del tiempo como se muestra en la gráfica adjunta. Determinar la velocidad del bloque 3 segundos después de haberse aplicado la fuerza P.

**Ejercicio N°3.** Un tren de 400 T entra en una pendiente " $i = tg(\alpha) = 0,006$  (donde  $\alpha$  es el ángulo de elevación) con la velocidad de 54 km/h. El coeficiente global de rozamiento del tren es 0,005. Y 50 segundos después del comienzo de la subida su velocidad se reduce hasta 45 km/h. Utilizando el teorema del momento lineal determinar la fuerza de tracción de la locomotora Diésel.

**Ejercicio Nº4.** Un tren de 200 T de peso se desplaza sobre un tramo horizontal de la vía con una aceleración de 0,2 m/seg². La resistencia de rozamiento en los ejes constituye 10 kg por cada tonelada de peso del tren y se considera que no depende de la velocidad. Determinar la potencia desarrollada por la locomotora Diésel en el instante t=10 seg, si en el instante t=0 seg la velocidad del tren era igual a 18 m/seg.

**Ejercicio N°5.** Considerando que la magnitud de la resultante R de todas las fuerzas que actúan sobre el pistón varía durante un cierto intervalo según la ley:  $\mathbf{R} = \mathbf{0,4. P. (1-kt)}$ , con: [t] = seg,  $k = 1,6\text{seg}^{-1}$ ,  $t_0 = 0$ ,  $t_1 = 0,5\text{seg}$ ,  $v_0 = 0,2\text{m/seg}$ , P = peso. Determinar la velocidad del pistón en el instante  $t_1$ 

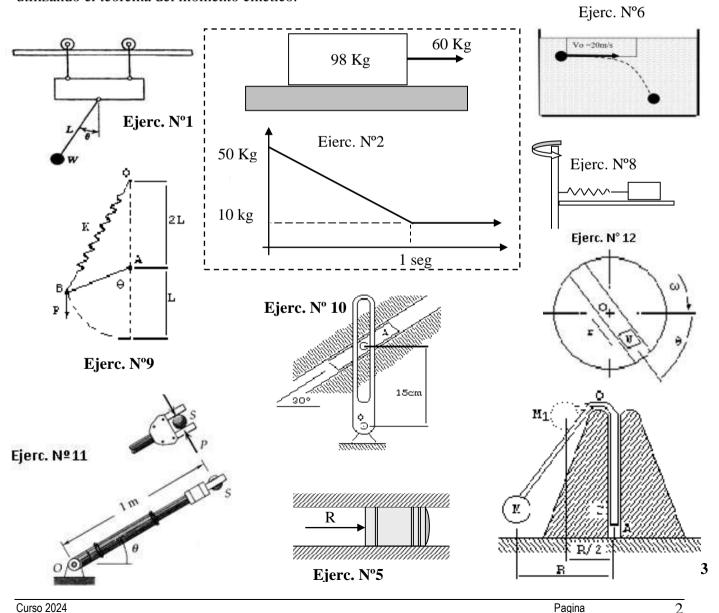
**Ejercicio Nº6.** Se dispara horizontalmente y dentro de un recipiente conteniendo un fluido viscoso un proyectil esférico de masa m=10kg a una velocidad inicial de 20m/s. Si la fuerza viscosa del proyectil con el medio en el que se mueve responde a la expresión  $F=\mu$ .v siendo  $\mu=10$ Ns/m y además el proyectil experimenta una fuerza de flotación de 2N, determinar aproximadamente el alcance máximo horizontal del proyectil y su velocidad final.

**Ejercicio N°7.** Un móvil se desplaza en un medio viscoso que le produce una resistencia al movimiento dada por la expresión  $\mathbf{R} = (\mathbf{a} + \mathbf{kV})$  W donde "V" es la velocidad adquirida en m/seg; W es el peso en kg, "a" y "k" son constantes que valen 3 y 0,3 respectivamente. Si el móvil pesa 10 kg y se desplaza bajo la acción de una fuerza constante de 100 kg:

- a) determinar el tiempo necesario para pasar de 10 km/h hasta 30 km/h;
- b) determinar el espacio recorrido en ese intervalo.

**Ejercicio Nº8**. Un bloque pequeño que pesa 25 kg descansa sobre un bastidor que gira alrededor de un eje vertical con una velocidad angular de 60 RPM. El resorte tiene una constante de 4 kg/cm. La fuerza del resorte es igual a kx, donde k es la constante y x es el alargamiento o compresión del resorte. El coeficiente de rozamiento entre el bloque y el bastidor se supone que es despreciable. Cuando el resorte no está alargado, su longitud es de 60 cm. Determinar el alargamiento del resorte.

**Ejercicio Nº9**. Una barra AB de peso despreciable está amortiguada sobre un soporte fijo y en B soporta un peso P. Un resorte cuya constante es K, de peso despreciable y longitud libre 2L, está articulado en B a una barra y en O sobre un soporte fijo. Determinar las relaciones que deben existir entre P, K y L para que el equilibrio tenga lugar para  $\theta = 60^{\circ}$ . ¿En qué condición el equilibrio es estable? Graficar la curva de potencial U=U<sub>(θ)</sub> cuando [P=0,4881.K.L].


Curso 2024 Pagina 1

**Ejercicio Nº10**. El movimiento del bloque A de 1 kg en su guía viene regido por la rotación del brazo ranurado alrededor de O en un plano vertical. Si el brazo tiene una velocidad angular de 6 rad/seg y una aceleración angular de 20 rad/seg<sup>2</sup>, ambas en sentido horario, en la posición vertical presentada, determinar la fuerza F ejercida por el brazo sobre el pasador mostrado en A y hallar la fuerza normal entre el bloque y su guía de 30°. El rozamiento es despreciable en todas las superficies.

**Ejercicio Nº11**. El brazo de un robot mueve la masa puntual "S" de 2 kg en un plano vertical. Cuando el ángulo  $\theta$  vale 30°, la velocidad angular del brazo en torno al eje horizontal que pasa por O es de 50 rad/s en sentido horario y su aceleración es de 20 rad/s<sup>2</sup> en sentido antihorario. Además, el elemento hidráulico se acorta a la velocidad constante de 0,5m/s. Hallar la fuerza de agarre mínima necesaria P si el coeficiente de rozamiento estático entre la esfera y la mordaza es de 0,5.

**Ejercicio** N°12. Un disco ranurado rota en un plano vertical alrededor de O con una velocidad angular constante w. Una partícula de peso W se mueve en la ranura sin fricción. Si la partícula parte del reposo en r = 0 cuando la ranura pasa por la posición  $\theta=0^{\circ}$ , establecer y resolver la ecuación del movimiento de la partícula y obtener la fuerza normal N y el radio r como función de  $\theta$ .

**Ejercicio Nº13**. Una pesa M está atada en el extremo de un hilo inextensible MOA cuya parte OA pasa por un orificio vertical; la pesa gira alrededor del eje a 120 rpm formando una circunferencia de radio MC=R. Tirando lentamente el hilo se acorta la parte exterior del hilo hasta la longitud OM1, con lo cual la pesa describe una circunferencia de radio R/2. Calcular el número de revoluciones por minuto que hace la pesa utilizando el teorema del momento cinético.

