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Abstract—This paper discusses the constrained stochastic gra-
dient (CSG) algorithm used for controlling antenna arrays, aiming
to maximize the signal-to-interference-plus-noise ratio (SINR) in
mobile communications. Firstly, analytical expressions for the first
moment of the weight vector and the SINR characteristic of the
standard CSG algorithm are derived for two interferer signals,
considering small step-size conditions and assuming Gaussian
signal, interference, and noise. From these model expressions, the
CSG algorithm performance is assessed, which predicts undesired
behavior (termed here unbalanced behavior, pertaining to an
unbalance between maximizing signal power and minimizing in-
terference power) when one or more interference angles-of-arrival
are close to the signal angle-of-arrival and the angle-of-arrival
spreads of the involved signals are small. Finally, by using the
model expressions, an improved CSG (ICSG) algorithm is pro-
posed to compensate the unbalanced behavior of the standard
CSG algorithm. The accuracy of the proposed model and the
effectiveness of the modified algorithm are assessed through
numerical simulations.

Index Terms—Adaptive antenna arrays, algorithm modeling,
constrained stochastic gradient algorithm, mobile communication.

I. INTRODUCTION

O VER the last few years, wireless communication net-
works have become more and more popular. Thus, the in-

creasing number of users is causing serious problems in densely
urbanized areas since the frequency spectrum is approaching
the limit of its capacity [1]. The limited spectrum problem can
be overcome by using sectorized cells and increasing frequency
reuse, along with a reduction of cell size [2]. For instance, with
a layout of seven cells per cluster [see Fig. 1(a)], having three
sectors of 120 per cell (delimited by dashed lines in Fig. 1), the
number of carrier frequencies available in each sector is 1/21 of
the total number of available frequencies. On the other hand, in a
layout of three cells per cluster [see Fig. 1(b)], the number of car-
rier frequencies available in each sector is 1/9 of the total, thus
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Fig. 1. Cell plan using (a) 7-cell and (b) 3-cell clusters with three 120 sectors.

increasing the system capacity (in terms of carrier frequencies
per sector) by a factor of approximately 7/3. However, distance

between co-channel cells then decreases by a factor of
(see Fig. 1), thus increasing the level of co-channel interfering
signals in the system [3]. A strategy to reduce such interference
is the use of antenna arrays at the base stations, so that the array
radiation pattern is directed to the position of the mobile termi-
nals inside the proper cell and canceling the co-channel inter-
ference to other cells [1].

Ideally, each cell must have knowledge of the position of all
mobile terminals in its area, thus determining a global optimum
solution. Unfortunately, such an approach is not practical. Cur-
rently, all information about the mobile terminals is obtained
through the uplink channel. With this information available, an
approach in which the neighboring cells reduce the transmitted
signal power in the direction of the co-channel mobile termi-
nals can be used. In this way, the interference level is globally
decreased. By considering that the signal propagation of the up-
link and downlink channels is similar, it can be assumed that
the covariance matrices of the channels are similar [1]. For in-
stance, in [4]–[6] such an assumption is used for controlling the
adaptive array by using estimates of the desired and interference
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downlink covariance matrices obtained from uplink measure-
ments. Such a procedure is used in [1] to define a local objec-
tive function, thereby obtaining an approximate global optimum
solution in a cooperative network, without the need of having
communication between cells. From that objective function, the
constrained stochastic gradient (CSG) algorithm is derived. The
CSG algorithm is interesting because of its low computational
complexity and very good convergence properties in compar-
ison with other algorithms [1].

The performance of an adaptive array can be assessed from
the signal-to-interference-plus-noise ratio (SINR) function [1].
To obtain adequate knowledge of such a function, it is necessary
to consider a wide range of operating conditions. Specifically,
several angle-of-arrival (AoA) combinations for the in-cell and
co-channel interfering uplink signals must be considered. In this
way, the performance assessment of the algorithm requires a
large number of simulations to determine the mean behavior
for each combination. In this context, the possibility of having
an algorithm model becomes important since much simulation
time can be saved. Such a model allows an exhaustive study
of the algorithm performance in different working conditions,
also providing useful insights into the algorithm behavior. Thus,
this research work aims to develop model expressions for the
mean weight behavior of the adaptive filter as well as for the
SINR characteristic. The simplifying assumption considered to
derive the analytical model is a small step-size condition. The
presented expressions only consider the case of two interferers,
although the approach could be generalized to three or more
interferers.

Through an analysis of the obtained model expressions, the
existence of unbalanced behavior in the standard CSG algorithm
is demonstrated in this paper. Such behavior occurs under the
following condition: one or more interference AoAs are close
to the signal AoA, and the AoA spreads of the involved sig-
nals are small. In this situation, the CSG algorithm stresses the
co-channel interference minimization more than the maximiza-
tion of the power radiated to the in-cell mobile terminal. The
proposed mean weight behavior expression allows us to address
two central points:

i) to explain the unbalanced behavior of the standard CSG
algorithm;

ii) to suggest a modification to the standard CSG algorithm
to compensate the unbalanced behavior.

The modified algorithm is termed improved CSG (ICSG) al-
gorithm. Numerical simulations are used to assess the accuracy
of the proposed model and the effectiveness of the modified al-
gorithm.

This paper is organized as follows. Section II presents the
standard CSG algorithm characteristics and its updating equa-
tions. In Section III, model expressions describing the mean
weight and SINR behaviors are derived. Section IV discusses
the unbalanced behavior of the standard CSG algorithm through
the model expressions, and proposes a modification to the CSG
algorithm. Simulation results are presented in Section V. Fi-
nally, Section VI presents concluding remarks.

II. STANDARD CSG ALGORITHM

In adaptive antenna array systems, the adaptive algorithm
aims to maximize the irradiated power to the mobile terminal
(MT) inside the cell and to minimize that power to the
co-channel MT in other cells . Such powers are expressed,
respectively, as

(1)

and

(2)

where denotes the complex weight
vector, and and are, respectively, the in-cell and
co-channel interference downlink covariance matrices. Then,
the adaptive algorithm must maximize the following expression
over [1]:

(3)

where is the identity matrix, introduced to account for normal-
ized additive noise. Note that the complex weight vector in (3)
is the independent variable of that deterministic cost function.
In [1], the CSG algorithm is derived by means of an intuitive
interpretation of (3), by considering instead of , where

is now a time-varying variable arising from the adaptive
process discussed in the following. Thereby, to maximize (3),
the steepest descent algorithm is used for the co-channel inter-
ference power along with the steepest ascent algorithm for the
in-cell signal power. Since two optimization processes are si-
multaneously running, such a strategy may result in slow algo-
rithm convergence. A heuristic solution to circumvent the con-
vergence problem is to use a two-step updating scheme. Firstly,
the numerator of (3) is adapted while the denominator is fixed;
next, the denominator is adapted, keeping the numerator fixed.
Mathematically, such a scheme can be implemented by incor-
porating a projection matrix into the updating expression. As
such, the CSG algorithm uses both the in-cell uplink signal
and the co-channel uplink signal to estimate the downlink
covariance matrices and , respectively. For the case
of two interferers, the updating equations corresponding to the
aforementioned two-step optimization processes are given by
[1]

(4)
and

(5)
with

(6)
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where and , for
, 2, are the instantaneous estimates of and , re-

spectively. Vectors and are, respectively, the in-cell
uplink and the th co-channel interference vectors. Parameters

and are the corresponding algorithm step sizes. The
weight vector is normalized at each iteration, maintaining the
term constant in the denominator of (3).

III. STOCHASTIC MODEL OF THE STANDARD CSG ALGORITHM

This section develops a stochastic model for the weight vector
behavior as well as an expression for the SINR, which depends
on that vector. For such, we assume that the elements of the input
vectors and , for 1, 2, are samples of a stochastic
process. As a consequence, the same assumption also applies to
the weight vector.

A. Mean Weight Behavior

The first step to obtain a model describing the mean weight
behavior of the adaptive vector is to determine the expected
value of both sides of (6). Thus,

(7)

Obtaining such an expected value is not a trivial task. How-
ever, by considering that the evolution of is smooth (small
dispersion condition, i.e., when the standard deviation is much
smaller than the mean), the following approximation can be
used [7]:

(8)

From the modeling point of view, a small dispersion in is
ensured under a small-step-size condition, whereby (8) becomes
valid. The weight vector and the received signal vectors are as-
sumed independent, which is justifiable from the small-step-size
condition [8]. Then, by taking the expected value of both sides
of (4) and (5), one obtains

(9)

and

(10)
where

(11)

and

(12)

are the normalized sample covariance matrices, and
and . The calculation

of matrices (11) and (12) is shown in Appendix I. By substi-
tuting (9) into (10) and the resulting expression into (8), the
expression for mean weight behavior is obtained as

(13)

where

(14)
Expression (13) can also be interpreted as the well-known

power method, used to obtain the eigenvector corresponding to
the dominant eigenvalue of a diagonizable matrix. Therefore,
the steady-state value for the mean-weight vector is the eigen-
vector associated with the dominant eigenvalue of [9].

At this point, it is important to observe that the analysis of
the weight error vector, defined as the difference between the
current weight vector and optimum weight, is not useful, since
in array systems the optimum weight vector is neither intrinsic
to the system nor particularly relevant, unlike the usual adaptive
filter problem performing a system identification of an explicit
“true” impulse response. For more details, such background is
well covered in [1].

B. SINR Expression

The basic objective of the adaptive array is to maximize the
downlink SINR. Therefore, the SINR behavior is an impor-
tant metric governing the array performance. By definition, the
SINR is given by

(15)

where a normalized noise power of value 1 is assumed in the
denominator. Since the weight vector and the downlink signals
are independent, the evolution of the SINR can be written as

(16)

Alternatively, (16) can also be expressed as

(17)

where is the second moment of the
adaptive weight vector.

Note from (17) that the second moment must be known. Due
to the small dispersion of the CSG algorithm adaptive weight
evolution, the following approximation is considered for the
sake of mathematical simplicity [10]:

(18)

Thus, (16) can now be computed from the mean weight expres-
sion using

(19)
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IV. INSIGHTS FROM THE MODEL EXPRESSIONS

A. Unbalanced Behavior of the Standard CSG Algorithm

The algorithm controlling the adaptive antenna array must ad-
just the weights to fulfill two goals taking into account the irra-
diated power: the power must be large for the intended in-cell
MT and small for the co-channel MT in neighboring cells

. A crucial point in this process is to adequately bal-
ance these two objectives. From the derived model (19), the
standard CSG algorithm behavior can be assessed for different
working conditions. Undesired behavior is demonstrated here
for the combination of two conditions: one or more co-channel
interference and in-cell signals arrive from almost the same di-
rection, and the respective AoA spread is small. In that case, the
standard CSG algorithm leads to minimizing more than
maximizing . With the aid of the proposed model, it is pos-
sible to understand and propose a solution for this undesired be-
havior, which is discussed in the following. Although the SINR
(19) is the ultimate arbiter, here we shall focus our discussion
on the mean weight update (9), which is responsible for maxi-
mizing .

First, let us consider the case in which the in-cell signal
arrives from the same direction as the interference signal .
In this case, the covariance matrices and are numeri-
cally similar, which also occurs with the normalized sample co-
variance matrices and . Thereby, replacing by
and by in (9), we get after some algebra

(20)

A generic matrix (for subscript or ) and the corresponding
normalized have the same eigenvectors (see Appendix I), so
for each matrix product having the form , we can write

(21)

where is the eigenvector matrix of , and and are
diagonal matrices containing the eigenvalues and (

of and , respectively. When the AoA spread
(defined as in [1]) is small (for instance, , the covari-
ance matrices obtained from the signal model used in [1] have a
large eigenvalue dispersion, resulting in a dominant eigenvalue

, i.e., . In this situation, matrix
has a dominant eigenvalue with a value slightly less than 1 [see
Appendix II]. As a result, one can make the following approxi-
mations: and , for , leading
to

(22)

Then, substituting (22) into (20), we obtain

(23)

Now, by analyzing (23) we observe the following:
i) Term aims to maximize the power radiated

to the in-cell MT. This is inferred from the fact that the
gradient of the numerator of (19) is and
is equivalent to .

ii) Term avoids radiating power to the
co-channel MT. This characteristic is intrinsic to the
algorithm nature.

As a result, the term in (23) is dominant
as compared with , since under unbalanced
conditions, becomes approximately equal to 1. Therefore,
through model expressions it is verified that, under certain con-
ditions, the standard CSG algorithm gives more importance to
minimizing the co-channel interference along with considerably
reducing the power radiated to the in-cell MT. A similar effect
can be observed when .

Now, let us consider the case when two interferers have AoAs
close to the in-cell AoA. For this case, the update vector in (9),
defined as , is given by

(24)

Then, the projection of in the direction maximizing results
in

(25)

In (25), , , and are semi-positive-
definite matrices, so that all terms of (25) are greater than or
equal to zero. Now, if the statistics of the interference signals
are similar to the desired signal (similar AoA), the sum of the
second and third r.h.s. terms in (25) may be larger than the first
one. In this way, the update direction is opposite to the direction
that maximizes the power radiated to the in-cell MT. In addition,
unbalanced behavior may also occur when the effect of both in-
terferers is combined, even for AoA interferers somewhat sep-
arated (see Section V-B, Example 3).

B. Improved CSG Algorithm

In this section, a modification to the standard CSG algorithm
is proposed. The modified version, here termed the improved
CSG (ICSG) algorithm, circumvents the unbalanced behavior
previously discussed. Thus, considering the critical case

, a possible compensation for the unbalanced be-
havior is to reduce the effect of in the same way
as is diminished by . A straightfor-
ward way to do this is to include the term
into the updating expression (9), resulting in

(26)
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TABLE I
CSG AND ICSG ALGORITHM COMPUTATIONAL BURDEN COMPARISON

TABLE II
PARAMETER VALUES USED FOR THE NUMERICAL SIMULATIONS

Vector compensates for the mentioned un-
balanced behavior, as follows. Replacing by in (26), we
obtain

(27)

In the same way as before, approximations
and can be verified. Note that

still reduces the effect of ; how-
ever, the term is also reduced accordingly
to . Hence, vector
circumvents the unbalanced behavior of (9) when .

Similarly as before, considering the case , matrix
must also be included in the updating expression (9),

resulting in

(28)

Now, let us consider the case when two interferers have AoAs
close to the in cell AoA. Similarly as before, (28) is analyzed by
projecting the update vector, defined now as

(29)
in the direction that maximizes . Thereby, we obtain

(30)

In the considered condition, from (30) we verify that the in-
corporated terms act in favor of maximizing . However,
in uncritical conditions, the impact of those terms is insignif-
icant, since matrices and are

negligible as compared to , , and ,
leading (28) to have similar behavior to (9).

Since better performance is verified considering model
expressions (10) and (28), we can now formulate the ICSG al-
gorithm including instantaneous estimates of matrices
and into the standard CSG algorithm expressions.
Therefore, (4) is modified to

(31)

while (5) and (6) remain unchanged.
The proposed algorithm also outperforms the standard CSG

algorithm for and . The addition of the
compensated terms in the improved algorithm version leads to
a slight increase in the computational burden, as detailed in
Table I.

V. SIMULATION RESULTS

In this section, Monte Carlo (MC) simulations are compared
with the stochastic model predictions for both the standard CSG
and ICSG algorithms for the two-interferer case. In the exam-
ples shown, exact downlink covariance matrices are used and
determined as in [1], considering twelve independent fading
paths . For the downlink signals, an in-cell signal-to-
noise ratio 36 dB and a co-channel signal-to-noise ratio

15 dB are considered [1]. For the MC simulations, 100
independent realizations are used. Comments regarding the sim-
ulation results are given at the end of this section.

A. Normal Behavior

Here, a comparison between the characteristics of the stan-
dard CSG and ICSG algorithms under normal conditions is pre-
sented. For each algorithm, curves resulting from MC simula-
tions and stochastic model expressions are shown. For the uplink
channel, the in-cell signal angle-of-arrival is 60 and the
interference angles-of-arrival are 16 and 36 .

1) SINR: To assess the model expressions with respect to
the behavior of the SINR , (17) is used with the matrix

determined from both MC simulations and the proposed
analytical model. Four situations are considered (see Table II).

In Table II, the use of is reasonable for equal signal
and interference power. Moreover, from numerical simulations,
no great advantage for using unequal step-size values has been
observed. In Fig. 2, the resulting SINR curves for each case are
shown. Note that the considered conditions do not lead to un-
balanced behavior of the standard CSG algorithm. In addition,
very good accuracy for the model prediction, obtained by (19),
is verified.

2) Mean Weight Behavior: To evaluate the mean weight be-
havior of the adaptive weight vector, Cases 1, 2, 3, and 4 are
considered. In Fig. 3, the mean weight real part evolution for all
cases are shown, presenting the results obtained from the MC
simulations and the prediction models. Similar results have been
obtained for the imaginary part.
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Fig. 2. Behavior of SINR ���� under normal conditions. Standard CSG algorithm: (gray ragged lines) MC simulations, (dark dashed lines) proposed model.
ICSG algorithm: (gray dashed lines) MC simulations, (dark dotted lines) proposed model. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

B. Unbalanced Behavior

In this section, a comparison between the behavior of the
SINR curves for both the standard CSG and ICSG algorithms
under unbalanced conditions is presented. For each algorithm,
the curves are obtained from MC simulations and the proposed
stochastic models. Three examples are shown.

1) Example 1: In this example, the case is con-
sidered. The algorithm parameters are , ,

12 , 36 , 3 , and .
Fig. 4 shows the SINR characteristic for the CSG and ICSG al-
gorithms. In Fig. 5, the radiation pattern of the antenna array is
plotted, considering that the coefficients have reached the mean
steady-state value as determined by (13).

2) Example 2: In this example, the case is assessed.
The algorithm parameters are , , 36 ,

36 , 3 , and . Fig. 6
shows the SINR curves for the CSG and ICSG algorithms and
Fig. 7 presents the associated radiation patterns considering the
steady-state weight vectors.

3) Example 3: In this example, the case where both and
are within the nominal beamwidth centered at is consid-

ered. The algorithm parameters are the same as in Example 1,
except that now 0 , 12 , 12 . Fig. 8 shows
the SINR characteristics for the CSG and ICSG algorithms and

Fig. 9, the corresponding radiation diagrams in the steady-state
conditions.

C. Verification of Key Assumptions

In this section, numerical simulations demonstrating the
validity of assumptions (8) and (18) are presented. Fig. 10
illustrates assumption (8) considering two cases: Fig. 10(a)
shows each of the vector components for a balanced case (see
Section V-A, Case 1) and Fig. 10(b), for an unbalanced case
(see Section V-B, Example 3). From the obtained plots, we
verify the reasonability of the used approximation, given the
very good match between the curves. In Fig. 11, assumption
(18) is likewise verified through the comparison of (16) and
(19), by using the same cases as in Fig. 10.

D. Discussion

From the presented figures, very good agreement between
simulation and model is evident. Fig. 2 illustrates the behavior of
the ICSG algorithm under normal working conditions, which is
similar to the standard CSG. Especially, for some balanced con-
ditions, for instance Case 3, a slightly larger steady-state SINR
value is noticed for the ICSG algorithm as compared with the
standard CSG. This can be explained by the fact that the ICSG
algorithm favors maximizing instead of minimizing .
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Fig. 3. Real part of mean weight behavior under normal conditions. Standard CSG algorithm: (gray ragged lines) MC simulations, (dark dashed lines) proposed
model. ICSG algorithm: (gray dashed lines) MC simulations, (dark dotted lines) proposed model. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

Fig. 4. Unbalanced behavior, Example 1: SINR curve. Standard CSG algo-
rithm: (gray ragged lines) MC simulations, (dark dashed lines) proposed model.
ICSG algorithm: (gray dashed lines) MC simulations, (dark dotted lines) pro-
posed model.

In Figs. 4, 6, and 8 for unbalanced conditions, a peak in the SINR
curves of the standard CSG algorithm is verified. Such a char-
acteristic is due to the term in (15), which reduces more
slowly than : while , the SINR is growing,

whereas when , the denominator of (15) becomes
almost constant as the SINR decreases. The difference between
simulation and theory observed in Figs. 6 and 8 is due to the
approximations used in the model derivation (see Section V-C).

From the radiation patterns shown in Figs. 5, 7, and 9, one
can verify that during the unbalanced behavior of the standard
CSG algorithm, the MT does not receive enough power from the
base station, indicating that service has been interrupted. On the
other hand, for the antennas controlled by the ICSG algorithm,
sufficient power is always provided to the MT.

VI. CONCLUDING REMARKS

In this work, analytic models for the first moment of the
weight vector and the SINR characteristic were presented. The
models are obtained assuming a slow adaptation condition. A
very good match between MC simulations and the prediction
model is obtained for both transient and steady-state behavior.
By using the proposed model, the behavior of the adaptive array
can be efficiently assessed over a wide range of working condi-
tions. Thereby, an unbalanced behavior of the standard CSG al-
gorithm can be verified. In addition, a study of this unbalanced
behavior leads to an improved version of the CSG algorithm,
which compensates for such undesired behavior.
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Fig. 5. Example 1: radiation patterns for � � �12 ���, � � �12 ���, and � � 36 ���. (a) Standard CSG algorithm. (b) ICSG algorithm.

Fig. 6. Unbalanced behavior, Example 2: SINR curves. Standard CSG algo-
rithm: (gray ragged lines) MC simulations, (dark dashed lines) proposed model.
ICSG algorithm: (gray dashed lines) MC simulations, (dark dotted lines) pro-
posed model.

APPENDIX I
DETERMINATION OF THE NORMALIZED

SAMPLE COVARIANCE MATRIX

In this Appendix, an approach for determining a normalized
sample covariance matrix , defined as

(32)

is presented. Here, as in [1], a complex Gaussian signal vector
, having a covariance matrix , is assumed.

To determine (32), we have used an approach similar to the
one presented in [11], applied now to the complex Gaussian case

[12]. Thereby, an auxiliary matrix function is defined with
elements given by

(33)

with

(34)

Note that for , (33) is by definition the desired expectation,
i.e.,

(35)

Applying partial differentiation in (33) with respect to , the
term in the denominator of its integrand is eliminated, re-
sulting in the expression

(36)

where

(37)
corresponds to the cross-correlation between and when
and are jointly Gaussian complex random variables with co-
variance matrix . Therefore, the factor ,
and integrating (36) with respect to , considering that
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Fig. 7. Example 2: radiation patterns for � � 36 ���, � � �36 ���, and � � 36 ���. (a) Standard CSG algorithm. (b) ICSG algorithm.

Fig. 8. Unbalanced behavior, Example 3: SINR curves. CSG algorithm: (gray
ragged lines) MC simulations, (dark dashed lines) proposed model. ICSG algo-
rithm: (gray dashed lines) MC simulations, (dark dotted lines) proposed model.

, obtains a simpler expression for the ele-
ments of (35), in the same way as [11]. Thereby, (32) can be
written as

(38)

By expressing , where is the eigenvector ma-
trix of and is a diagonal matrix containing the eigenvalues

of for , we can write

(39)

where is a diagonal matrix with elements

(40)

Now, (40) can be calculated by using the partial fraction ex-
pansion technique. For instance, by considering distinct eigen-
values, the elements of matrix are given by

(41)

where

(42)

and

(43)

with

(44)
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Fig. 9. Example 3: radiation patterns for � � 0 ���, � � �12 ���, and � � 12 ���. (a) Standard CSG algorithm. (b) ICSG algorithm.

Fig. 10. Verification of assumption (8). (a) Balanced case. (b) Unbalanced case.

Fig. 11. Verification of assumption (18). (a) Balanced case. (b) Unbalanced case.
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APPENDIX II
DOMINANT EIGENVALUE VERIFICATION

In this appendix, we verify the analysis assumption which
uses the dominant eigenvalue approximation. To this end, con-
sidering that the covariance matrices, obtained from the signal
model used in [1], have a large eigenvalue dispersion for small
angle spread , well separated eigenvalues result, i.e.,

. In this case, the following relations are
valid:

(45)

and

(46)

From (41), we have for

(47)

Now, each term of (47) is analyzed using (45) and (46) as fol-
lows:

i) Considering the coefficient , we get

(48)
which results in .

ii) Now, for the coefficient , we have

(49)
thereby, .

iii) Finally, for the coefficient , we obtain

(50)

resulting in .

Now, by using (i), (ii), and (iii) in (47), we obtain
.
Then, taking for , using again (45) and (46), simi-

larly as before, the following results are obtained:

(51)

(52)

and

(53)

which leads to for .

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor and the
anonymous reviewers for their valuable and constructive com-
ments and suggestions, from which the revision of this paper
has benefited significantly.

REFERENCES

[1] D. R. Morgan, “Downlink adaptive array algorithms for cellular mobile
communications,” IEEE Trans. Commun., vol. 51, no. 3, pp. 476–488,
Mar. 2003.

[2] J. Litva and T. K.-Y. Lo, Digital Beamforming in Wireless Communi-
cations. Norwood, MA: Artech House, 1996.

[3] L. C. Godara, “Cellular systems,” in Handbook in Antennas in Wire-
less Communications, L. C. Godara, Ed. Boca Raton, FL: CRC Press,
2001.

[4] J. M. Goldberg and J. R. Fonollosa, “Downlink beamforming for spa-
tially distributed sources in cellular mobile communications,” Signal
Process., vol. 65, no. 2, pp. 181–197, Mar. 1998.

[5] B. M. Hochwald and T. L. Marzetta, “Adapting a downlink array from
uplink measurements,” IEEE Trans. Signal Process., vol. 49, no. 3, pp.
642–653, Mar. 2001.

[6] Y.-C. Liang and F. P. S. Chin, “Downlink channel covariance matrix
(DCCM) estimation and its applications in wireless DS-CDMA sys-
tems,” IEEE J. Sel. Areas Commun., vol. 19, no. 2, pp. 222–232, Feb.
2001.

[7] A. Papoulis and S. U. Pillai, Probability, Random Variables and Sto-
chastic Processes. New York: McGraw-Hill, 2002.

[8] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications.
New York: Wiley, 1998.

[9] J. Demmel, Applied Numerical Linear Algebra. Philadelphia, PA:
SIAM, 1997.

[10] N. J. Bershad, P. Celka, and J.-M. Vesin, “Stochastic analysis of gra-
dient adaptive identification of nonlinear systems with memory for
Gaussian data and noisy input and output measurements,” IEEE Trans.
Signal Process., vol. 47, no. 3, pp. 675–689, Mar. 1999.

[11] M. Rupp, “The behavior of LMS and NLMS algorithms in the presence
of spherically invariant processes,” IEEE Trans. Signal Process., vol.
41, no. 3, pp. 1149–1160, Mar. 1993.

[12] C. W. Therrien, Discrete Random Signals and Statistical Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1992.



KOLODZIEJ et al.: ON THE CSG ALGORITHM: MODEL, PERFORMANCE, AND IMPROVED VERSION 1315

Javier Ernesto Kolodziej was born in Posadas,
Mns., Argentina. In 2002, he received the B.S.
degree from the National University of Misiones,
Argentina, and the M.Sc. degree, in 2006, from the
Federal University of Santa Catarina, Florianopolis,
Brazil, where he is currently working towards the
Ph.D. degree.

He joined the Department of Electronic Engi-
neering at the National University of Misiones in
2001. His current research interests include adaptive
signal processing theory and its applications.

Orlando José Tobias (S’94–M’00) was born in Mar
del Plata, Argentina. He received the B.S. degree in
electrical engineering from the National University
of La Plata, Argentina, in 1988 and the M.Sc. and
Ph.D. degrees in electrical engineering from the
Federal University of Santa Catarina, Florianópolis,
Brazil, in 1995 and 1999, respectively.

He is now with the LINSE-Circuits and Signal Pro-
cessing Laboratory at the Federal University of Santa
Catarina, Brazil. He also joined the Department of
Electrical and Communications Engineering, Univer-

sity of Blumenau (FURB), Blumenau, Brazil, in 2003. He is currently teaching
communication systems. His present research interests include statistical anal-
ysis of adaptive algorithms, active noise and vibrations control, and image pro-
cessing.

Rui Seara (M’93–SM’04) was born in Flori-
anópolis, SC, Brazil. He received the B.E. and
M.Sc. degrees in electrical engineering from the
Federal University of Santa Catarina, Brazil, in 1975
and 1980, respectively, and the Doctoral degree in
electrical engineering from the Paris-Sud University,
Paris, France, in 1984.

In 1976, he joined the Electrical Engineering De-
partment at the Federal University of Santa Catarina,
Brazil, where he is currently a Professor of Electrical
Engineering and Director of LINSE-Circuits and

Signal Processing Laboratory. His research interests include digital and analog
filtering, adaptive signal processing algorithms, image and speech processing,
and digital communications.

Dennis R. Morgan (S’63–S’68–M’69–SM’92–
LS’08) was born in Cincinnati, OH, on February 19,
1942. He received the B.S. degree from the Univer-
sity of Cincinnati, OH, in 1965 and the M.S. and
Ph.D. degrees from Syracuse University, Syracuse,
NY, in 1968 and 1970, respectively, all in electrical
engineering.

From 1965 to 1984, he was with the General Elec-
tric Company, Electronics Laboratory, Syracuse, NY,
specializing in the analysis and design of signal pro-
cessing systems used in radar, sonar, and communi-

cations. He is now a Distinguished Member of Technical Staff with Bell Labora-
tories, Alcatel-Lucent (formerly Lucent Technologies, formerly AT&T), where
he has been employed since 1984: from 1984 to 1990 he was with the Spe-
cial Systems Analysis Department, Whippany NJ, where he was involved in the
analysis and development of advanced signal processing techniques associated
with communications, array processing, detection and estimation, and active
noise control; from 1990 to 2002, he was with the Acoustics Research Depart-
ment, Murray Hill, NJ, where he was engaged in research on adaptive signal
processing techniques applied to electroacoustic systems, including adaptive
microphones, echo cancellation, talker direction finders, and blind source sepa-
ration; since 2002, he has been with the Wireless Research Laboratory, Wireless
and Broadband Access Research Center, and Radio Access Research Domain,
Murray Hill, NJ, where he is involved in research on adaptive signal processing
applied to RF and optical communication systems. He has authored numerous
journal publications and is coauthor of Active Noise Control Systems: Algo-
rithms and DSP Implementations (New York: Wiley, 1996) and Advances in
Network and Acoustic Echo Cancellation (New York: Springer-Verlag, 2001).

Dr. Morgan served as Associate Editor for the IEEE TRANSACTIONS ON

SPEECH AND AUDIO PROCESSING from 1995 to 2000, and Associate Editor for
the IEEE TRANSACTIONS ON SIGNAL PROCESSING from 2001 to 2004 and from
2008 to the present. Since 2004 he has been a member of the Signal Processing
Theory & Methods Technical Committee of the IEEE Signal Processing
Society.


