
Dadas las siguientes señales discretas:

Calcular la convolución de tiempo discreto.

Primeramente, debemos recordar que la misma está definida como:

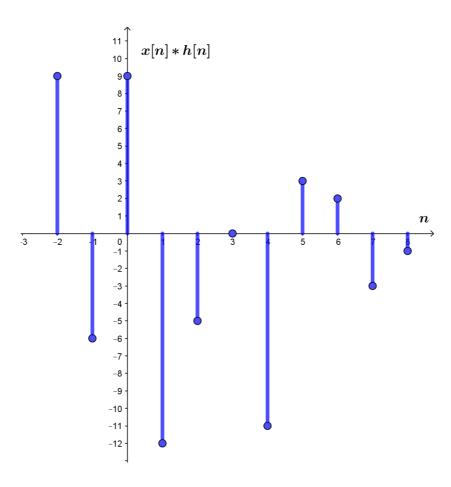
$$x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] \cdot h[n-m]$$

En la siguiente tabla ubicamos x[m] en la primer fila y luego h[-m] en la segunda, de manera que coincida n=0 (indicado con la flecha azul) para ambas señales. Luego desplazamos h[n-m] modificando el valor de n de tal manera que el último elemento de h[n-m] coincida con el primero de x[m] posteriormente vamos desplazando de a un lugar y realizando las sumatorias de los productos de $x[m] \cdot h[n-m]$ hasta que se haya realizado todo el recorrido. Con cada desplazamiento de h[n-m] lo que varía es n.

Las últimas tres columnas de la tabla son el valor de n, R(resultado) y los cálculos realizados:

						₹											
m	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	n	R	Cálculos
x[m]						-3	2	0	0	3	1						
h[-m]			-1	0	2	-3	0	-3							0		
h[-2-m]	-1	0	2	-3	0	-3									-2	9	$-3 \cdot (-3) = 9$
h[-1-m]		-1	0	2	-3	0	-3								-1	-6	$-3 \cdot 0 + 2 \cdot (-3) = -6$
h[0-m]			-1	0	2	-3	0	-3							0	9	$-3 \cdot (-3) + 2 \cdot 0 + 0 \cdot (-3) = 9$
h[1-m]				-1	0	2	-3	0	-3						1	-12	$-3 \cdot 2 + 2 \cdot (-3) + 0 \cdot 0 + 0 \cdot (-3) = -12$
h[2-m]					-1	0	2	-3	0	-3					2	-5	$-3 \cdot 0 + 2 \cdot 2 + 0 \cdot (-3) + 0 \cdot 0 + 3 \cdot (-3) = -5$
h[3-m]						-1	0	2	-3	0	-3				3	0	$-3 \cdot (-1) + 2 \cdot 0 + 0 \cdot 2 + 0 \cdot (-3) + 3 \cdot 0 + 1 \cdot (-3) = 0$
h[4-m]							-1	0	2	-3	0	-3			4	-11	$2 \cdot (-1) + 0 \cdot 0 + 0 \cdot 2 + 3 \cdot (-3) + 1 \cdot 0 = -11$
h[5-m]								-1	0	2	-3	0	-3		5	3	$0 \cdot (-1) + 0 \cdot 0 + 3 \cdot 2 + 1 \cdot (-3) = 3$
h[6-m]									-1	0	2	-3	0	-3	6	2	$0 \cdot (-1) + 3 \cdot 0 + 1 \cdot 2 = 2$
h[7-m]										-1	0	2	-3	0	7	-3	$3 \cdot (-1) + 1 \cdot 0 = -3$
h[8 - m]											-1	0	2	-3	8	-1	$1 \cdot (-1) = -1$

Explicamos de manera más detallada las primeras filas:


En la primera fila tenemos x[m] en la segunda fila h[-2-m] vemos que los valores que se superponen son (-3) de x[m] y (-3) de h[-2-m] por lo que se obtiene: $-3 \cdot (-3) = 9$.

En la tercera fila tenemos h[-1-m] debemos realizar la sumatoria de los productos de todos los valores que se superponen en ambas señales, es decir: $-3 \cdot 0 + 2 \cdot (-3) = -6$.

De igual forma continuamos desplazando la señal h[n-m] hasta que ya no tengamos valores superpuestos con x[m].

Ī	x[m]						-3	2	0	0	3	1			n	R	Cálculos
İ	h[-2 - m]	-1	0	2	-3	0	-3								-2	9	$-3 \cdot (-3) = 9$
	h[-1-m]		-1	0	2	-3	0	-3						-	-1	-6	$-3 \cdot 0 + 2 \cdot (-3) = -6$
ĺ	h[0-m]			-1	0	2	-3	0	-3						0	9	$-3 \cdot (-3) + 2 \cdot 0 + 0 \cdot (-3) = 9$

Graficamos el resultado:

