

Asignatura: Técnicas de Comando

Profesor: Klenser Enrique Alberto

Asignatura: Técnicas de Comando

Tema 1: Conceptos introductorios

Representaciones numéricas — Sistemas digitales y analógicos — Sistemas de números digitales — Representación de cantidades binarias — Circuitos digitales

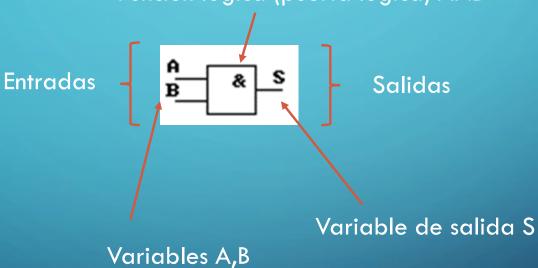
(Segunda parte)

Asignatura: Técnicas de Comando

Puertas lógicas

Las puertas lógicas son circuitos electrónicos capaces de realizar operaciones lógicas básicas.

Traer a memoria: la clase anterior se introdujo el concepto de constante y variable, la variable puede albergar cualquiera de los dos estados de la constante; ya sea verdadero/falso, 1/0, veamos un ejemplo.


Asignatura: Técnicas de Comando

Puertas lógicas

A = 1 asignamos el valor 1 (uno) a la variable A

B = 0 asignamos el valor 0 (cero) a la variable B

Función lógica (puerta lógica) AND

Asignatura: Técnicas de Comando

Puertas lógicas

B = 0 asignamos el valor 0 (cero) a la variable B

A = 1 asignamos el valor 1 (uno) a la variable A

B = 0 asignamos el valor 0 (cero) a la variable B

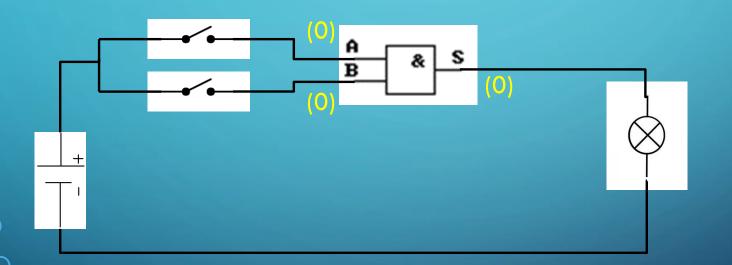
A = 1 asignamos el valor 0 (cero) a la variable A

B = 0 asignamos el valor 1 (uno) a la variable B

A = 1 asignamos el valor 1 (uno) a la variable A

B = 1 asignamos el valor 1 (uno) a la variable B

Ahora veremos como se comporta la variable de salida S con las distintas combinaciones de entradas arriba descriptas

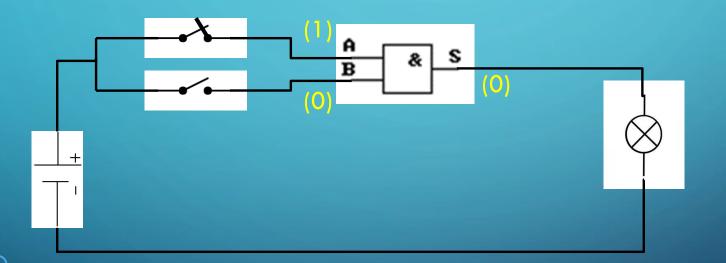

Asignatura: Técnicas de Comando

Puertas lógicas

A = 0 asignamos el valor 0 (cero) a la variable A

B = 0 asignamos el valor O (cero) a la variable B

S = 0 la variable de salida S toma el valor O (cero)

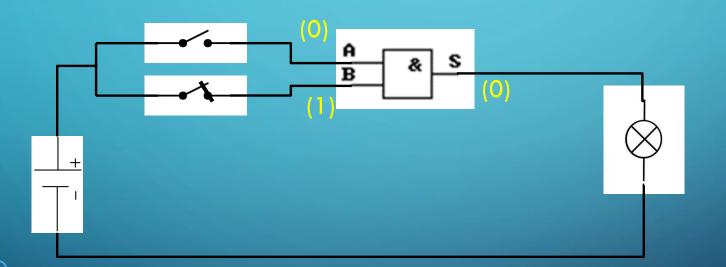

Asignatura: Técnicas de Comando

Puertas lógicas

A = 1 asignamos el valor 1 (uno) a la variable A

B=0 asignamos el valor O (cero) a la variable B

S = 0 la variable de salida S toma el valor O (cero)

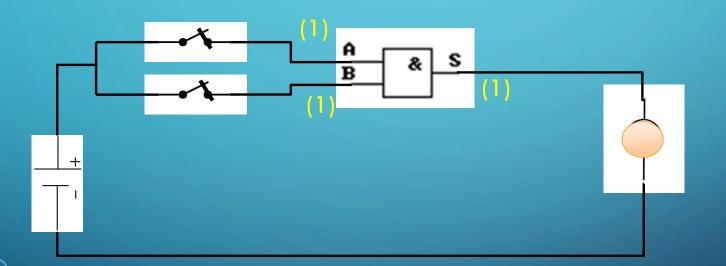

Asignatura: Técnicas de Comando

Puertas lógicas

A = 0 asignamos el valor 0 (cero) a la variable A

B = 1 asignamos el valor 1 (uno) a la variable B

S = 0 la variable de salida S toma el valor O (cero)


Asignatura: Técnicas de Comando

Puertas lógicas

A = 1 asignamos el valor 1 (uno) a la variable A

B=1 asignamos el valor 1 (uno) a la variable B

S = 1 la variable de salida S toma el valor 1 (cero)

Asignatura: Técnicas de Comando

Puertas lógicas

Lo expuesto en al pagina anterior da lugar a la famosa "Tabla de verdad" de una puerta lógica, que no es otra cosa que la recopilación de los datos anteriormente vistos pero en forma de tabla.

A	В	s
0	0	0
Ģ	1	Ø
1	0	1

Formula $S = A \cdot B$

Asignatura: Técnicas de Comando

Puertas lógicas

Función	Ecuación lógica	Simbolos			Tabla de	
		Norma MIL	Norma IEC	Circuito físico con contactos	verdad	Cronograma
or	S = A+B	A B	A≥1S	A S	ABS 000 011 101 1111	A B S
AND	S = A·B	A S	A & S	A B S	ABS 000 010 100 1111	A B S S
нот	S = A	A S inversor	As	F S S S S S S S S S S S S S S S S S	A S 0 1 1 0	A S
NOR (OR+NOT)	$S = \overline{A + B}$ $S = \overline{A} \cdot \overline{B}$	A S	B ≥1 S	Ā B S	ABS 001 010 100 1100	A B S
NAND (AND+NOT)	$S = \overline{A \cdot B}$ $S = \overline{A} + \overline{B}$	A S	A & S	Ā S B	ABS 001 011 101 110	A B S
EXOR	$S = A \oplus B = $ $= A \overline{B} + \overline{A} B$	A B	A = 1 S	A B S	ABS 000 011 101 110	A B S
EXCI TADOR	S = A	4s	A 1 S	A S S S S S S S S S S S S S S S S S S	A S 0 0 1 1	s s