PIEDRAS

DEFINICIÓN: Conformado de compuestos minerales en estado sólido

PIEDRAS NATURALES Y ARTIFICIALES

Clasificación de las piedras: Las piedras se clasifican en naturales y artificiales

Naturales: son las que se extraen de la naturaleza, para su utilización en el campo de la construcción, mediante un proceso tecnológico mínimo.

Artificiales: Son aquellas, que si bien tienen como base elementos de cantera, involucra en su fabricación algún procedimiento mas complejo.

ROCAS NATURALES

DEFINICIÓN: Conformado de compuestos minerales o mezclas de minerales

Mineral: Complejo formado por distintos elementos químicos. Es una sustancia de origen inorgánico, que ostenta una composición química aproximadamente constante y propiedades físicas homogéneas. Salvo escasas excepciones, se encuentra en estado sólido y tiene estructura cristalina.

Formación de las rocas: Es un proceso ininterrumpido de transformación de la corteza terrestre, mediante cambios térmicos u otras acciones exteriores, tales como viento, agua, acción química, presión, etc.

Cambios térmicos del magma — → dan origen a las **rocas ígneas**

Presión y temperatura **rocas metamórficas**

Magma: masa liquida, viscosa o semisólida constituyente inicial de la corteza terrestre. Suelen estar compuestos por una mezcla de líquidos, volátiles y sólidos

ROCAS NATURALES

DEFI

Mine que os Salvo

El ciclo de las rocas

Forn media etc.

Igneas EL CICLO DE LAS ROCAS Volcánicas SEDIMENTARIAS **IGNEAS** METAMÓRFICAS precipitación quimica Detritica Bioquímicas Filonianas Sedimentarias Metamórficas de contacto Regional

Ma

ELEMENTOS QUÍMICOS QUE CONSTITUYEN LAS ROCAS

Los distintos elementos químicos se encuentran en la corteza terrestre:

N^{o}	abreviatura	elemento	%
1	O	oxigeno	46.7
2	Si	silicio	27.9
3	Al	aluminio	8.1
4	Fe	hierro	5.0
5	Ca	calcio	3.6
6	Na	sodio	2.7
7	K	potasio	2.6
8	Mg	magnesio	2.0
9	Ti-P-otros		1.4

PRINCIPALES ÓXIDOS QUE CONSTITUYEN LAS ROCAS

Los distintos elementos químicos se encuentran en las rocas combinados formando distintos **óxidos y minerales**

N^o	Abreviatura química	nombre	%
1	SiO	sílice	58.2
2	Al_2O_3	Alumina	15.3
3	Fe_2O_3	Óxido férrico	3.2
4	FeO	Óxido ferroso	3.8
5	MgO	Magnesia	3.5
6	CaO	Cal	5.2
7	Na ₂ O	Óxido de sodio	3.8
8	K ₂ O	Óxido de potasio	3.2
9	TiO ₂	Óxido de titanio	1.1
10	H_2O	Agua	1.4
11	otros		1.3

PRINCIPALES MINERALES QUE CONSTITUYEN LAS ROCAS

nombre	dureza Mohs	peso especifico	composición
cuarzo	7	2.5-2.8	SiO ₂ dioxido de silicio
feldespato	6	2.6	solución sólida de tres componentes (silicatos dobles) Si ₃ O ₈ KAl silicato de potasio-aluminio Si ₃ O ₈ NaAl silicato de sodio-aluminio Si ₂ O ₈ CaAl ₂ silicato de calcio-aluminio
mica	2	2.7-3.2	Si ₃ O ₁₀ KAl ₃ (OH) ₂ (moscovita) Si ₃ O ₁₀ K (Mg Fe) ₃ Al(OH) ₂ biotita
calcita	3	2.6-2.8	C0 ₃ Ca carbonato de calcio
magnesita	3.5-5	3.1	C0 ₃ Mg carbonato de magnesio
dolomía	3.5-4	2.9	(CO ₃) ₂ MgCa carbonato doble calcio- mg
hematita	5-6	5.2	Fe ₂ O ₃ oxido férrico
limonita	5-5.5	3.5-3.9	FeO (OH) _n H ₂ O + Fe ₂ O ₃ n H ₂ O hidróxidos férrico
piroxeno anfibol	5 5	3-3.5	Silicatos complejos de calcio, magnesio, hierro, etc

CARACTERÍSTICAS FÍSICAS DE LAS ROCAS

COLORACIÓN

Una masa de material rocoso fundido, es una solución compleja de anhídrido de silicio y óxidos

- El sílice le otorga a la masa un carácter **ácido**
- Los óxidos le otorga un carácter **básico**

Si hay mas sílice que el que se puede combinar con los óxidos, entonces se dice que la roca posee un carácter ácido, si predominan los óxidos la roca tiene características básicas

Este carácter de las rocas se observa a través de su coloración:

Rocas ácidas: ligeramente coloreadas

Rocas básicas: colores oscuros.

CARACTERÍSTICAS FÍSICAS DE LAS ROCAS

TEXTURA

Textura de las rocas: indica el tamaño y disposición de los granos del mineral. Esto esta influenciado principalmente por la forma y velocidad de enfriamiento del magma

Enfriamiento uniforme: rocas de granos de similar tamaño

Cuando mas lento el enfriamiento: granos mas grandes

Enfriamiento no uniforme: estructura porfirica con granos de dos tamaños predominantes

CLASIFICACIÓN DE LAS ROCAS POR SU ORIGEN

POR SU FORMACIÓN GEOLÓGICA

ROCAS IGNEAS (Magmáticas):

Provienen de la solidificación de una masa en fusión denominada magma terrestre

ROCAS SEDIMENTARIAS:

Se denominan también rocas secundarias y están formadas por sedimentos debido al ataque de los agentes externos sobre las rocas primarias (ígneas). han adquirido su dureza por procesos de cementación, compactación, recristalizacion, etc.

ROCAS METAMÓRFICAS:

Son las que se han formado a partir de rocas ígneas o sedimentarias, debido a la acción de distintos factores, cambian su estructura, textura y minerales.

ROCAS IGNEAS:

Provienen de la solidificación de una masa en fusión denominada magma terrestre

Según la ubicación en el proceso de solidificación se clasifican en:

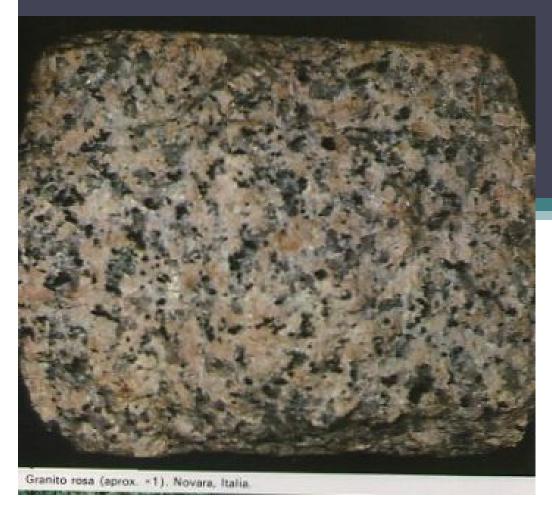
En profundidad: solidificación lenta sometida a altas presiones.

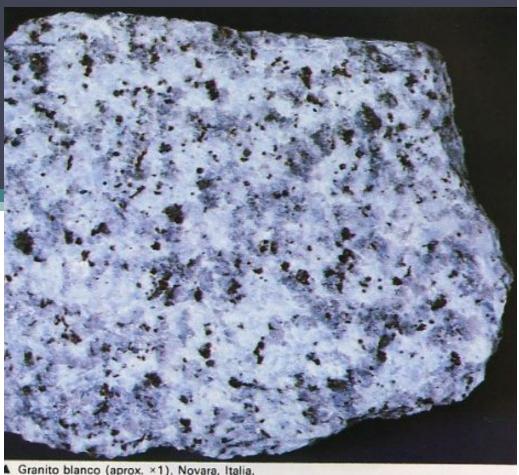
En superficie: solidificación rápida y a baja presión.

Transición entre ambas.

Dentro de esta clasificación, en cada uno de los tipos se presentan diferentes complejos según la composición del magma que las originó y las distintas condiciones físicas

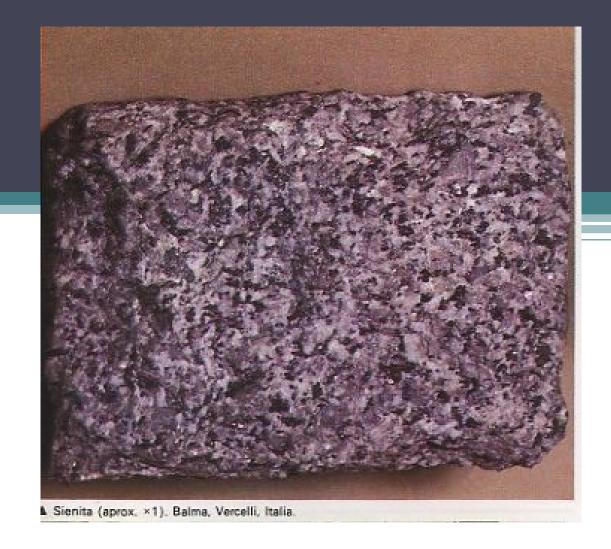
ROCAS IGNEAS:

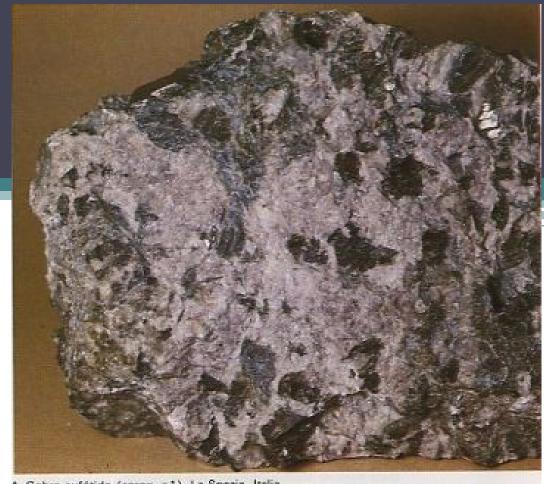

Las rocas ígneas según su profundidad de enfriamientos se clasifican entonces en:


TIPO	CONSOLIDACIÓN	ENFRIAMIENTO	ESTRUCTURA
EFUSIVAS O VOLCÁNICAS	superficial	superficial rápido	
	C 1: 1 1	1	
FILONIANAS	profundidad intermedia	meno <mark>s lentos y por</mark> etapas	porfiroides y microgranuladas
PLUTÓNICAS O INTRUSIVAS	grandes profundidades	lento	macrogranuladas

NOMBRE	MINERALES QUE LO COMPONEN					
	GRANO GRUESO					
GRANITO	GRANITO cuarzo + feldespato + mica					
SIENITA	feldespato + anfibol					
GABRO	feldespato + piroxeno					
GRANO FINO						
RIOLITA	ídem granito pero de grano fino					
BASALTO	ídem gabro pero de grano fino					

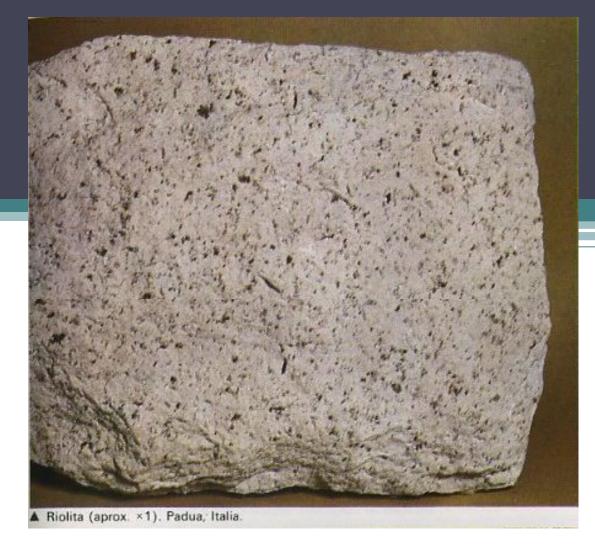
Algunas rocas ígneas clasificadas según su estructura granular :


GRANITO Minerales que lo componen: CUARZO + FELDESPATO + MICA Grano grueso: enriamiento lento – en profundidad

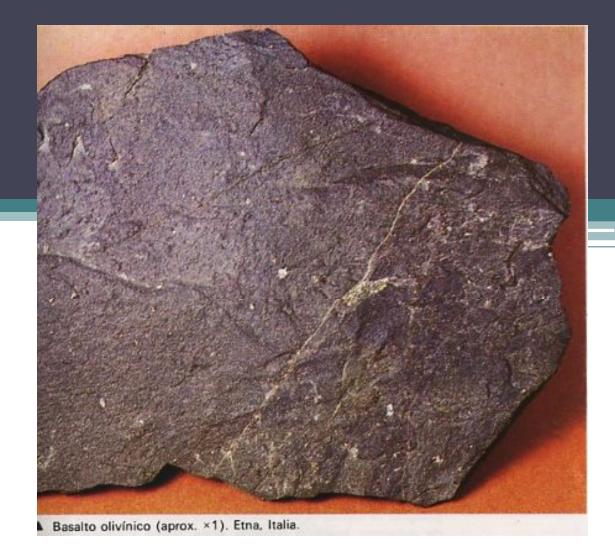

Algunas rocas ígneas clasificadas según su estructura granular :

<u>SIENITA</u> Minerales que lo componen: FELDESPATO + ANFIBOL Grano grueso: enriamiento lento – en profundidad

Algunas rocas ígneas clasificadas según su estructura granular :


GABRO Minerales que lo componen: FELDESPATO + PIROXENO Grano grueso: enriamiento lento - en profundidad

▲ Gabro eufótido (aprox. ×1). La Spezia, Italia.


Algunas rocas ígneas clasificadas según su estructura granular :

<u>RIOLITA</u> Minerales que lo componen: CUARZO + FELDESPATO + MICA Grano fino: enriamiento rápido – en superficie

Algunas rocas ígneas clasificadas según su estructura granular :

BASALTO Minerales que lo componen: FELDESPATO + PIROXENO Grano fino: enfriamiento rápido – en superficie

- Se denominan también rocas secundarias
- Están **formadas por sedimentos** debido al ataque de los agentes externos sobre las rocas primarias (ígneas)
- Han adquirido su dureza por **procesos de cementación**, **compactación**, recristalización, **etc.**

La conversión de los sedimentos en roca se denomina LITIFICACIÓN y puede ocurrir a través de los siguientes procesos :

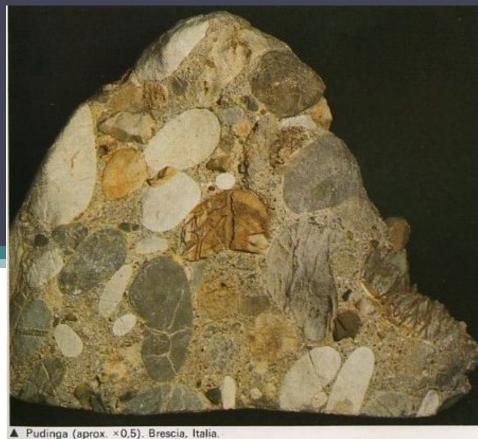
- **COMPACTACIÓN:** conversión por presión Ej: la arcilla se convierte en pizarra – la turba en carbón
- CEMENTACIÓN: los poros vacíos son llenados por solución de sílice y oxido de hierro
- **RECRISTALIZACIÓN:** mediante el crecimiento de cristales y el aporte de nuevos minerales contenidos en el agua

CLASIFICACIÓN DE LAS ROCAS SEDIMENTARIAS:

Según el tipo de sedimentación:

- CLÁSTICAS: Provienen de la sedimentación mecánica hecha por el viento, las aguas, etc. Pueden estar disgregadas o compactadas por simple presión, cementadas por caliza o sílice
- •QUÍMICAS: Sedimentadas por precipitados químicos. Provienen de soluciones y sus componentes provienen de lixiviación de otras rocas en descomposición
- **ORGANICAS**: Se han formado por sedimentos que contienen restos animales y vegetales Ej: rocas carboníferas

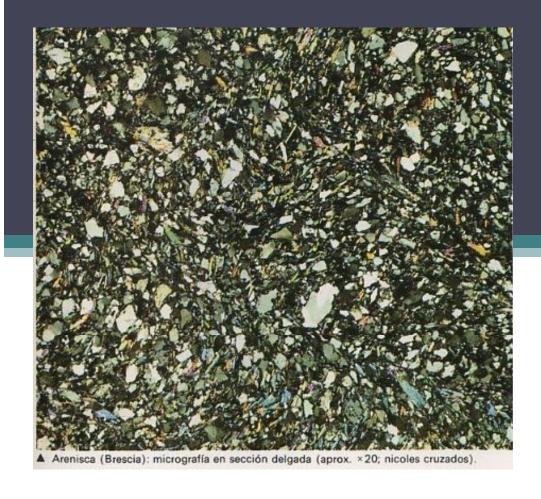
Según las características estructurales :

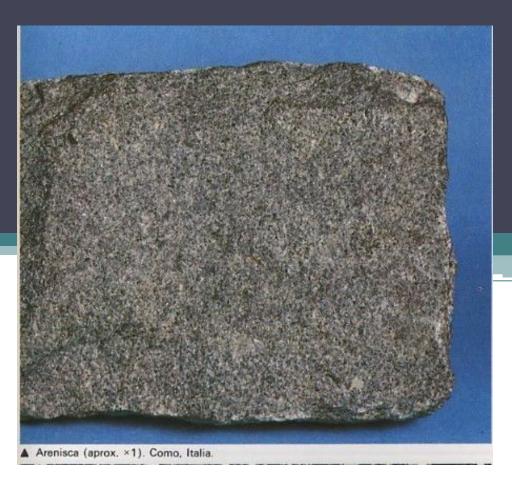

- Horizontales: Se mantiene la dirección en la cual se produjo el depósito
- Otras direcciones: La masa sedimentada estuvo sujeta a plegamientos

ROCAS SEDIMENTARIAS MAS COMUNES

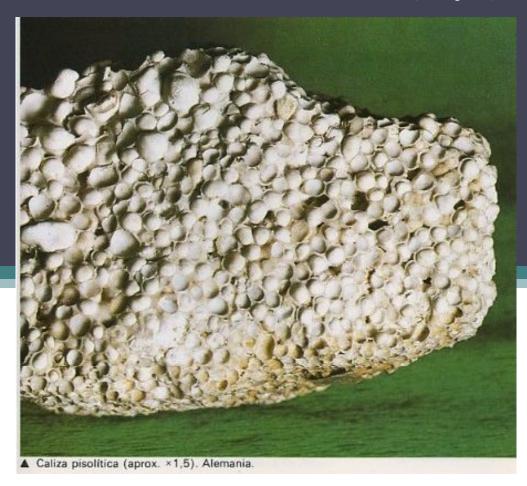
tipo		roca	
CLÁSTICAS	grueso (grav	ra)	conglomerados
	medios		areniscas
	finos		limo y pizarra
QUÍMICAS	CO ₃ Ca	carbonato de calcio	caliza
	COMg	carbonato de magnesio	dolomía
	SiO		sílice
	SOCa	sulfato de calcio	yeso
	SOCa-HO	sulfato de calcio anhidro	anhidrita
ORGÁNICAS	carbono (restos vegetales)		carbón

SEDIMENTARIAS CLÁSTICAS


CONGLOMERADOS Sedimentos gruesos (gravas)

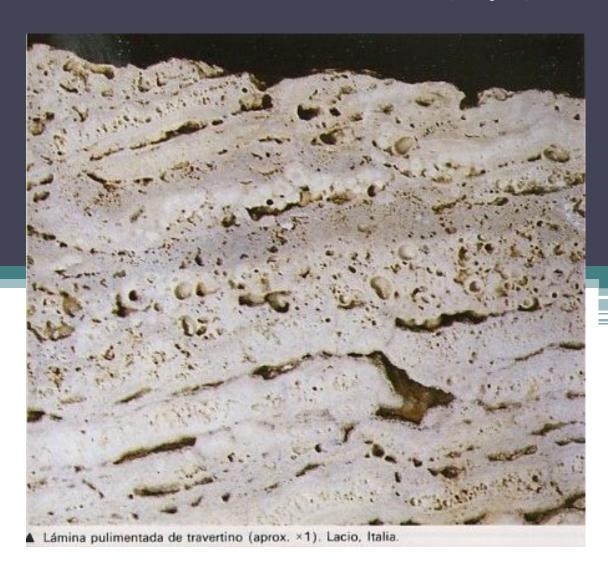


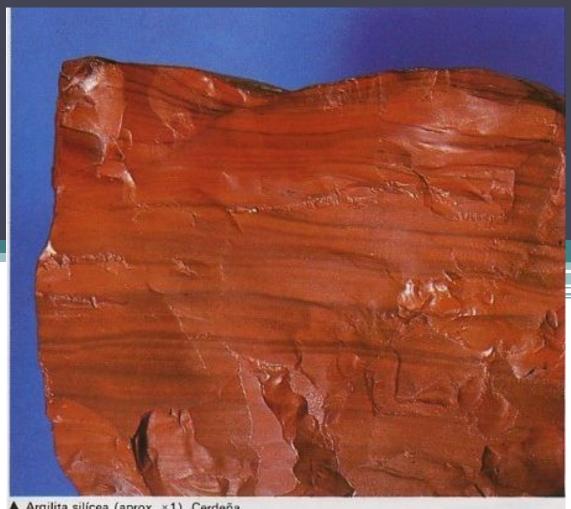
SEDIMENTARIAS CLÁSTICAS


ARENISCAS Sedimentos medios (arenas)



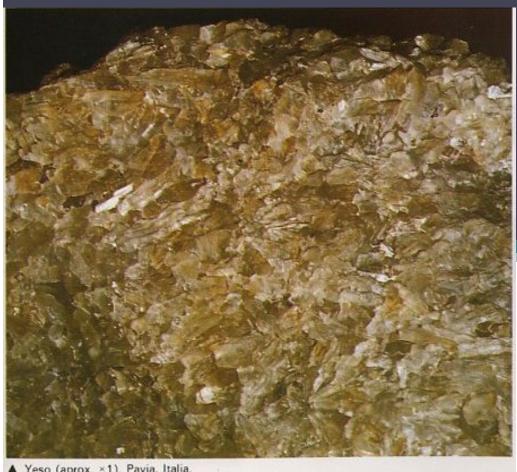
SEDIMENTARIAS QUÍMICAS

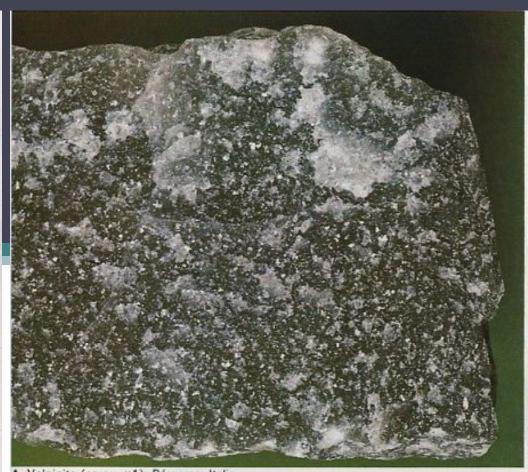

<u>CALIZAS</u> Carbonatos de calcio (CO₃Ca)


SEDIMENTARIAS QUÍMICAS

TRAVERTINO Carbonatos de calcio (CO₃Ca)

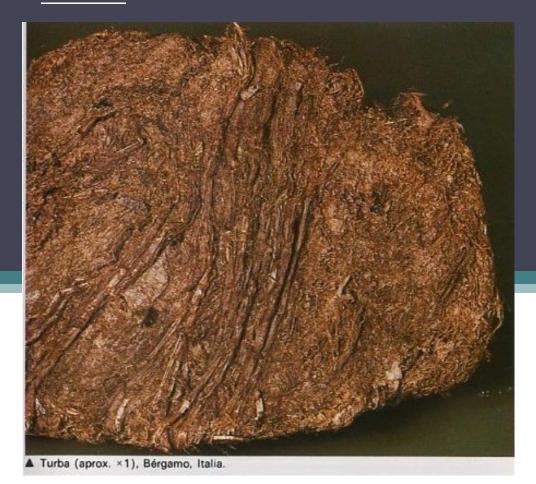
ROCAS SEDIMENTARIAS SEDIMENTARIAS QUÍMICAS


ARGILITA Silicea (SiO)


▲ Argilita silícea (aprox. ×1). Cerdeña.

SEDIMENTARIAS QUÍMICAS

YESO Sulfato de calcio (SOCa) ANHIDRITA Sulfato de calcio anhidro (SOCa-HO)



▲ Volpinita (aprox. ×1). Bérgamo, Italia.

ROCAS SEDIMENTARIAS SEDIMENTARIAS ORGÁNICAS

TURBA

ANTRACITA

ROCAS METAMÓRFICAS

Son las que se han formado a partir de rocas ígneas o sedimentarias.

Debido a la acción de distintos factores, cambian su estructura, textura y minerales. Estos factores son:

- **Temperatura:** tiene el doble efecto, por un lado aumenta el poder disolvente de los fluidos y por otro ayuda la precipitación y cambio químico de los componentes
- **Presión:** debido a movimiento de la corteza terrestre, por esta acción se forman rocas en que los cristales son aplanados, alargados o pulverizados
- Actividad químicas de gases y fluidos: Bajo calor y presión el agua se transforma en poderoso agente químico. El agua reforzado por el CO₂ (dióxido de carbono) disuelve, recristaliza, forma parte de los minerales, etc

ROCAS METAMÓRFICAS

Según las características estructurales:

Laminadas: muestran estructura en capas debido a presiones diferenciales

No laminadas: El metamorfismo proviene de un cambio debido a recristalizacion en ausencia de presiones

ROCAS METAMÓRFICAS MAS COMUNES

tipo	tipo de grano	roca	característica
LAMINAI)A		
	grano grueso	gneis	en rayas o bandas: laminada de un modo imperfecto
	grano medio	esquistos	bien laminado: se exfolia fácilmente, rico en mica
	grano fino	pizarra	se exfolia fácilmente en hojas pulidas

	roca	característica	mineral constituyente		
NO LAMI	NO LAMINADAS (EN MASA)				
	cuarzita	duro/quebradizo	principalmente cuarzo		
	mármol	duro/quebradizo	principalmente calcita o dolomita		
	tipos de serpentina	bastante blando	principalmente silicatos de magnesio hidratados		