Redes celulares inalámbricas

14.1. Principios de redes celulares

Organización de una red celular Funcionamiento de sistemas celulares Efectos de propagación en radio móvil Desvanecimiento en entornos móviles

14.2. Primera generación analógica

Asignación espectral Funcionamiento Canales de control en AMPS

14.3. CDMA de segunda generación

Sistemas celulares de primera y segunda generación Acceso múltiple por división de código Consideraciones de diseño de CDMA móvil inalámbrico IS-95 Enlace de ida en IS-95 Enlace de retorno en IS-95

14.4. Sistemas de tercera generación

Interfaces alternativas

Consideraciones de diseño de CDMA

14.5. Lecturas y sitios web recomendados

14.6. Términos clave, cuestiones de repaso y ejercicios

Términos clave Cuestiones de repaso Ejercicios

CUESTIONES BÁSICAS

- La esencia de una red celular reside en el uso de múltiples transmisores de baja potencia. El área que necesita ser cubierta se divide en celdas siguiendo un patrón hexagonal que proporciona una cobertura total del área.
- Un problema técnico crucial en las redes celulares es el desvanecimiento, problema éste que hace referencia a la variación temporal de la potencia de la señal recibida debido a los cambios existentes en el medio de transmisión o en la trayectoria o trayectorias seguidas.
- Las redes celulares de primera generación fueron analógicas y empleaban multiplexación por división en frecuencia.
- Las redes celulares de segunda generación son digitales. Una técnica de uso ampliamente aceptada es la basada en el acceso múltiple por división de código (CDMA).
- El objetivo de las comunicaciones inalámbricas de tercera generación (3G) es proporcionar comunicaciones inalámbricas de una velocidad suficiente para soportar datos multimedia y vídeo además de voz.

e entre todos los avances espectaculares experimentados en las comunicaciones de datos y las telecomunicaciones, el desarrollo de las redes celulares ha sido, quizá, el que ha tenido un carácter más revolucionario. La tecnología celular es la base de las comunicaciones móviles inalámbricas y posibilita el acceso de usuarios en lugares difícilmente alcanzables por las redes cableadas. La tecnología celular subyace en la telefonía móvil, los sistemas de comunicaciones personales, el acceso inalámbrico a Internet y las aplicaciones web inalámbricas, entre otras.

En este capítulo comenzaremos estudiando los principios básicos utilizados en todas las redes celulares. A continuación, comentaremos tecnologías celulares específicas y estándares que se encuentran convenientemente agrupadas en tres generaciones. La primera generación se basa en una tecnología analógica y, aunque aún sigue siendo utilizada, se puede considerar en fase de extinción. La tecnología dominante hoy en día es la constituida por los sistemas digitales de segunda generación. Finalmente, los sistemas digitales de tercera generación y alta velocidad han comenzado a emerger.

14.1. PRINCIPIOS DE REDES CELULARES

La radio celular es una técnica que fue desarrollada con el fin de incrementar la capacidad disponible para el servicio de telefonía móvil sobre radio. Previamente a la introducción de la radio celular, el servicio de telefonía móvil sobre radio era proporcionado únicamente por un transmisor/receptor de alta potencia. Un sistema típico soportaría en torno a 25 canales con un radio efectivo de alrededor de 80 km. La forma de incrementar la capacidad del sistema es utilizar sistemas de baja potencia con un radio más corto y emplear muchos más transmisores/receptores. Comenzaremos esta sección comentando la organización de los sistemas celulares, examinando más tarde algunos de los detalles de su implementación.

ORGANIZACIÓN DE UNA RED CELULAR

La esencia de una red celular reside en el uso de múltiples transmisores de baja potencia, del orden de 100 W o menos. Dado que el rango de un trasmisor de estas características es pequeño, el área

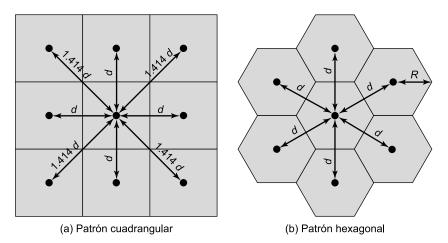
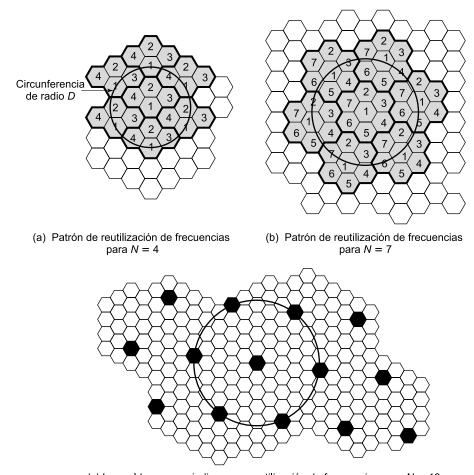


Figura 14.1. Geometrías celulares.

debe ser dividida en celdas, cada una de las cuales dispone de su propia antena. A cada celda se le asigna una banda de frecuencias y una **estación base** (compuesta por un transmisor, un receptor y una unidad de control) que le presta servicio. Las celdas adyacentes reciben una asignación distinta de frecuencias, evitando así la aparición de interferencias o diafonía. No obstante, las celdas suficientemente alejadas entre sí pueden emplear la misma banda de frecuencias.


La primera decisión de diseño que se debe tomar es la forma de las celdas que han de cubrir el área. Una matriz de celdas cuadradas sería la disposición más sencilla de definir (*véase* Figura 14.1a). Sin embargo, esta geometría no es la más idónea. Si la anchura de una celda cuadrada es d, cada celda tiene cuatro vecinas a una distancia d y otras cuatro a una distancia $\sqrt{2d}$. A medida que un usuario móvil dentro de una celda se mueva hacia las fronteras de la misma, es deseable que todas las antenas adyacentes estén equidistantes. Esto simplifica la tarea de determinar cuándo cambiar al usuario a una antena adyacente y qué antena seleccionar. Un patrón hexagonal proporciona antenas equidistantes (*véase* Figura 14.1b). El radio de un hexágono se define como el radio de la circunferencia que lo circunscribe (equivalentemente, la distancia desde el centro a cada vértice, que es también igual a la longitud de un lado del hexágono). Para un radio de celda R, la distancia entre el centro de la celda y el centro de cada celda adyacente es $d = \sqrt{3R}$.

En la práctica no se utiliza un patrón hexagonal perfecto. Las alteraciones con respecto a la forma ideal se deben a las limitaciones topográficas, las condiciones locales de propagación de la señal y restricciones para la ubicación de las antenas.

En un sistema celular inalámbrico, el usuario se encuentra limitado en la cantidad de veces que puede utilizar la misma frecuencia para comunicaciones diferentes, dado que las señales, no estando restringidas, pueden interferir con otras incluso si se encuentran geográficamente separadas. Los sistemas que son capaces de soportar un número elevado de comunicaciones simultáneamente precisan de mecanismos para conservar el espectro.

Reutilización de frecuencias

Cada celda en un sistema celular posee un transceptor base. La potencia de transmisión se controla cuidadosamente (hasta el punto que esto sea posible en entornos de comunicaciones con movilidad altamente variable) para permitir la comunicación dentro de la celda utilizando una frecuencia

(c) Las celdas negras indican una reutilización de frecuencias para N=19

Figura 14.2. Patrones de reutilización de frecuencias.

dada, a la vez que se limita la potencia en esa frecuencia que escapa de los límites de la celda, alcanzando así las adyacentes. El objetivo es usar la misma frecuencia en otras celdas cercanas, permitiendo de esta forma que la misma frecuencia pueda ser empleada en varias conversaciones simultáneamente. Generalmente se asignan entre 10 y 50 frecuencias a cada celda, en función del tráfico esperado.

La cuestión esencial es determinar cuántas celdas debe haber entre dos celdas que utilizan la misma frecuencia para que estas dos no interfieran entre sí. Existen varios patrones de reutilización de frecuencias, algunos de los cuales se ilustran en la Figura 14.2. Si el patrón consta de N celdas y a cada celda se le asigna el mismo número de frecuencias, cada celda puede disponer de K/N frecuencias, donde K es el número total de frecuencias asignadas al sistema. Para AMPS (*véase* Sección 14.2), K = 395 y N = 7 es el patrón más pequeño que puede proporcionar un aislamiento suficiente entre dos usos de la misma frecuencia. Esto implica que podrá haber, en media, un máximo de 57 frecuencias por celda.

En la caracterización de la reutilización de frecuencias se usan comúnmente los siguientes parámetros:

D = distancia mínima entre los centros de las celdas que utilizan la misma banda de frecuencias (llamados cocanales).

R = radio de la celda.

d = distancia entre los centros de celdas adyacentes ($d = \sqrt{3R}$).

N = número de celdas en cada patrón repetitivo (cada celda en el patrón emplea una banda única de frecuencias), denominado **factor de reutilización**.

En un patrón de celdas hexagonal solamente son posibles los siguientes valores de N:

$$N = I^2 + J^2 + (I \times J), I, J = 0, 1, 2, 3, ...$$

Los valores posibles de *N* son, por tanto, 1, 3, 4, 7, 9, 12, 13, 16, 19, 21 y así sucesivamente. Se verifica la relación siguiente:

$$\frac{D}{R} = \sqrt{3N}$$

Esto puede también ser expresado como $D/d = \sqrt{N}$.

Aumento de la capacidad

A medida que más usuarios utilizan el sistema con el tiempo, el tráfico puede crecer hasta el punto de que no haya suficientes frecuencias asignadas a una celda para gestionar sus llamadas. Para hacer frente a esta situación se han utilizado una serie de aproximaciones, entre las cuales citamos las siguientes:

- Adición de nuevos canales: cuando un sistema se despliega en una región, lo común es que no todos los canales sean utilizados, de forma que el crecimiento y la expansión pueden ser gestionados ordenadamente mediante la adición de nuevos canales.
- Uso de frecuencias prestadas: en el caso más simple, las celdas congestionadas pueden tomar prestadas frecuencias de las celdas adyacentes. Las frecuencias pueden también ser asignadas a las celdas dinámicamente.
- **División de celdas:** la distribución del tráfico y de las características topográficas no son uniformes en la práctica. Este hecho puede utilizarse para conseguir un aumento de la capacidad. Las celdas en zonas de alto uso pueden ser divididas en celdas más pequeñas. Generalmente, las celdas originales tienen un tamaño de entre 6,5 y 13 km, pudiendo ser divididas las más pequeñas. Sin embargo, las celdas de 1,5 km se encuentran cerca del límite práctico de tamaño como solución general (no obstante, véase posteriormente la discusión sobre microceldas). El uso de celdas más pequeñas implica que el nivel de potencia debe ser reducido con objeto de mantener la señal dentro de la celda. Asimismo, a medida que el usuario se mueve cambia de una celda a otra, lo que requiere traspasar la llamada de un transceptor base a otro. Este proceso se denomina *traspaso* (*handoff*). A medida que las celdas son más pequeñas, estos traspasos son más frecuentes. La Figura 14.3 indica esquemáticamente cómo pueden ser divididas las celdas para proporcionar más capacidad. Una reducción del radio en un factor *F* reduce el área de cobertura e incrementa el número de estaciones base que son necesarias en un factor *F*².
- Sectorización de celdas: con esta técnica, una celda se divide en una serie de sectores en forma de cuña, cada uno de los cuales dispone de su propio conjunto de canales. Se emplean

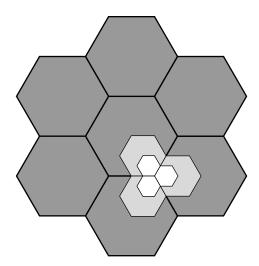


Figura 14.3. División de celdas.

generalmente 3 o 6 sectores por celda, asignándose a cada uno de ellos un subconjunto distinto de los canales de la celda. En la estación base se emplean antenas direccionales enfocadas hacia cada sector.

• Microceldas: a medida que las celdas se vuelven más pequeñas, las antenas se desplazan desde lugares como los tejados de edificios altos o colinas hasta puntos de menor altura, como los tejados de edificios más bajos o los laterales de los más altos, e incluso farolas, formando así microceldas. Cada disminución del tamaño de una celda viene acompañada por una reducción de los niveles de potencia radiada de la estación base y de las unidades móviles. Las microceldas son útiles en las calles de las ciudades de zonas congestionadas, a lo largo de las autopistas y dentro de grandes edificios públicos.

En la Tabla 14.1 se sugieren parámetros típicos para las celdas tradicionales, denominadas macroceldas, así como para las microceldas con la tecnología de la que se dispone actualmente. La dispersión del retardo medio de propagación se refiere a la dispersión del retardo de propagación multitrayectoria (es decir, la misma señal sigue diferentes trayectorias y existe un retardo temporal entre la primera y la última recepción de la señal en el receptor). Como se indica, el uso de celdas más pequeñas permite utilizar menor potencia y proporciona condiciones de propagación superiores.

Tabla 14.1.	Parametros tipicos	para macroceldas y	microceldas [ANDE95].
-------------	--------------------	--------------------	-----------------------

	Macrocelda	Microcelda
Radio de la celda	1 a 20 km	0,1 a 1 km
Potencia de transmisión	1 a 10 W	0,1 a 1 W
Variación media del retardo de propagación	0,1 a 10 μs	10 a 100 ns
Velocidad máxima	0,3 Mbps	1 Mbps

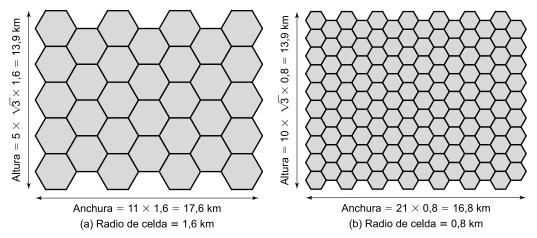


Figura 14.4. Ejemplo de reutilización de frecuencias.

Ejemplo [HAAS00]. Supóngase un sistema de 32 celdas con un radio de celda de 1,6 km, un total de 32 celdas, un ancho de banda en frecuencias que soporta 336 canales de tráfico y un factor de reutilización de N=7. Si existen 32 celdas, ¿qué área geográfica se cubre?, ¿cuántos canales existen por celda? y ¿cuál es el número total de llamadas concurrentes que pueden ser gestionadas? Repítase también para un radio de celda de 0,8 km y 128 celdas.

La Figura 14.4a muestra un patrón aproximadamente hexagonal. El área de un hexágono de radio R es $1,5R^2\sqrt{3}$. Un hexágono de radio 1,6 km tiene un área de 6,65 km² y el área total cubierta es 6,65 × 32 = 213 km². Para N = 7, el número de canales por celda es 336/7 = 48, con una capacidad total de canales de 48×32 = 1.536 canales. Para la composición mostrada en la Figura 14.4b, el área cubierta es 1,66 × 128 = 213 km². El número de canales por celda es 336/7 = 48, con una capacidad total de canales de 48×128 = 6.144 canales.

FUNCIONAMIENTO DE SISTEMAS CELULARES

La Figura 14.5 muestra los principales elementos de un sistema celular. Aproximadamente en el centro de cada celda se encuentra la estación base (BS, *Base Station*). Cada BS contiene una antena, un controlador y una serie de transceptores para la comunicación sobre los canales asignados a dicha celda. El controlador se usa para gestionar el proceso de llamada entre la unidad móvil y el resto de la red. En un instante dado pueden estar activos una serie de usuarios móviles, moviéndose dentro de la celda y comunicándose con la BS. Cada BS se encuentra conectada con una central de conmutación de telecomunicaciones móviles (MTSO, *Mobile Telecommunications Switching Office*), de tal forma que una MTSO puede prestar servicio a múltiples BS. El enlace entre una MTSO y una BS es normalmente cableado, aunque un enlace inalámbrico es también posible. La MTSO es la responsable de conectar las llamadas entre las unidades móviles y se encuentra también conectada con la red pública de telefonía o telecomunicaciones, de forma que es posible establecer conexiones entre un usuario fijo de la red pública y un usuario móvil en la red celular. La MTSO se encarga de asignar un canal de voz a cada llamada, realizar los traspasos y supervisar las llamadas para obtener la información pertinente para su facturación.

El funcionamiento de un sistema celular se encuentra totalmente automatizado y no precisa de ninguna acción por parte del usuario excepto la realización y recepción de llamadas. Existen dos

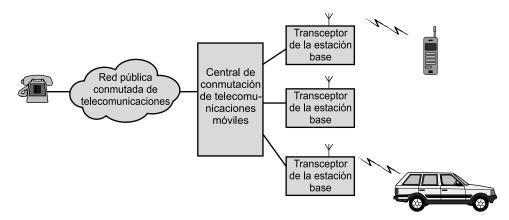


Figura 14.5. Estructura general de un sistema celular.

tipos de canales disponibles entre la unidad móvil y la BS: canales de control y canales de tráfico. Los **canales de control** se usan para el intercambio de información concerniente al establecimiento y mantenimiento de las llamadas, así como el establecimiento de una relación entre la unidad móvil y la BS más cercana. Los **canales de tráfico** sustentan la conexión de voz o datos entre los usuarios. La Figura 14.6 ilustra los pasos de una llamada típica entre dos usuarios móviles dentro de una zona controlada por una única MTSO:

- Inicialización de la unidad móvil: cuando la unidad móvil es encendida, busca y selecciona el canal de control de establecimiento de mayor potencia (véase Figura 14.6a). Las celdas con bandas de frecuencias diferentes difunden periódicamente sobre distintos canales de establecimiento. El receptor selecciona el más potente y lo monitoriza. El efecto de este proceso es que la unidad móvil ha seleccionado automáticamente la antena de la BS de la celda dentro de la cual operará¹. A continuación tiene lugar, a través de la BS, una etapa de negociación entre la unidad móvil y la MTSO que controla la celda. Mediante esta negociación se identifica al usuario y se registra su localización. Este proceso de rastreo se repite periódicamente mientras que el usuario se encuentre activo con objeto de registrar el movimiento de la unidad. Si ésta entra en una nueva celda, entonces una nueva BS es seleccionada. Adicionalmente, la unidad móvil es supervisada para su localización, punto éste que se discutirá más adelante.
- Inicio de llamada desde móvil: una unidad móvil origina una llamada enviando el número de la unidad a la que se llama a través del canal de establecimiento preseleccionado (véase Figura 14.6b). El receptor en la unidad móvil comprueba en primer lugar que el canal de establecimiento esté libre examinando la información en el canal de ida (procedente de la BS). Una vez que se detecta libre, la unida móvil puede transmitir sobre el correspondiente canal de retorno (hacia la BS). La BS envía entonces la solicitud hacia la MTSO.
- Localización: a continuación, la MTSO intenta completar la conexión con la unidad a la que se llama. Para ello, la MTSO envía un mensaje de localización a ciertas BS en función del número móvil al que se está llamando (*véase* Figura 14.6c). Cada BS transmite la señal de localización en el canal de establecimiento que tiene asignado.

¹ Normalmente, aunque no siempre, la antena y, por tanto, la estación base seleccionada es la más cercana a la unidad móvil. No obstante, éste no es siempre el caso debido a anomalías de propagación.

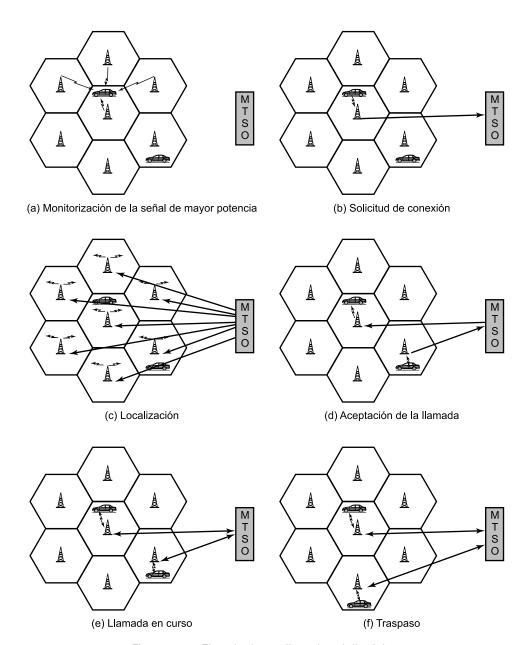


Figura 14.6. Ejemplo de una llamada móvil celular.

Aceptación de la llamada: la unidad móvil llamada reconoce su número en el canal de establecimiento que monitoriza y responde a la BS, la cual envía la respuesta a la MTSO. La MTSO establece un circuito entre la BS que llama y la que recibe la llamada. Al mismo tiempo, la MTSO selecciona un canal de tráfico disponible dentro de la celda de cada BS y notifica a las mismas, las cuales informan a las dos unidades móviles involucradas (véase Figura 14.6d). Tras esto, las dos unidades móviles sintonizan los respectivos canales que les han sido asignados.

- Llamada en curso: las dos unidades móviles intercambian señales de voz o datos mientras se mantiene la conexión, llevándose a cabo todo el proceso a través de sus respectivas BS y la MTSO (véase Figura 14.6c).
- **Traspaso:** si durante la conexión una de las unidades móviles se desplaza fuera del rango cubierto por la celda y entra en la zona de otra, el canal de tráfico tiene que cambiar a otro asignado a la BS en la nueva celda (*véase* Figura 14.6f). El sistema realiza este cambio sin interrumpir la llamada ni alertar al usuario.

Otras funciones que son realizadas por el sistema pero que no se ilustran en la Figura 14.6 son las siguientes:

- Bloqueo de llamadas: si todos los canales de tráfico asignados a la BS más cercana se encuentran ocupados durante la etapa de inicio de la llamada, la unidad móvil repite el intento un número de veces preestablecido. Después de un cierto número de intentos fallidos se le devuelve al usuario un tono de ocupado.
- **Terminación de llamadas:** cuando uno de los dos usuarios cuelga, la MTSO recibe una notificación y libera el canal de tráfico entre las dos BS.
- Corte de llamadas: debido a interferencias o focos de señal débil en ciertas zonas, es posible que durante una conexión la BS no pueda mantener la potencia de señal mínima requerida durante un determinado periodo de tiempo. En estas situaciones, el canal de tráfico hacia el usuario se corta y la MTSO es informada de este evento.
- Llamadas hacia/desde usuarios fijos y remotos: dado que la MTSO se encuentra conectada con la red conmutada pública de telecomunicaciones, puede establecer una conexión entre usuarios móviles en su zona y usuarios fijos a través de la red de telefonía. Más aun, la MTSO puede conectar con otra MTSO remota a través de la red telefónica o mediante líneas dedicadas y establecer una conexión entre un usuario móvil en su zona y otro usuario móvil remoto.

EFECTOS DE PROPAGACIÓN EN RADIO MÓVIL

La comunicación móvil por radio introduce ciertas complejidades que no se encuentran en las comunicaciones por cable o en las comunicaciones inalámbricas fijas. Dos problemas fundamentales son los que tienen que ver con la potencia de la señal y los efectos de la propagación de la misma.

- Potencia de la señal: la potencia de la señal entre la BS y la unidad móvil debe ser lo suficientemente fuerte para mantener la calidad de la señal en la recepción, sin llegar a interferir demasiado con canales de otras celdas que estén utilizando la misma banda de frecuencias. Existen numerosos factores que complican este fenómeno. El ruido de origen humano varía considerablemente, resultando en niveles de ruido variables. Por ejemplo, el ruido de encendido de los coches en el rango de las frecuencias que se utilizan en sistemas celulares es mayor en las ciudades que en zonas suburbanas. Otras fuentes de señal cambian de un lugar a otro. La potencia de la señal varía como una función de la distancia entre la BS y cualquier punto dentro de su celda. Además, la potencia de la señal varía dinámicamente a medida que la unidad móvil se desplaza.
- **Desvanecimiento:** incluso si la potencia de la señal se encuentra dentro de un rango efectivo, los efectos de propagación pueden interrumpir la señal y ocasionar errores. El desvanecimiento se comenta posteriormente en esta sección.

En el diseño de una distribución de celdas, el ingeniero de comunicaciones debe tener en consideración estos efectos de propagación, así como el nivel máximo deseado de potencia de transmisión en la BS y las unidades móviles, la altura típica de la antena de una unidad móvil y la altura disponible para la antena de la BS. Todos estos factores determinarán el tamaño de cada celda individual. Desafortunadamente, y como acabamos de comentar, los efectos de propagación son dinámicos y difíciles de predecir. Lo mejor que puede hacerse es proponer un modelo basándose en datos empíricos y aplicarlo a un entorno dado para obtener ciertas pautas sobre el tamaño de la celda. Uno de los modelos más ampliamente utilizados fue desarrollado por Okumura et al. [OKUM68] y posteriormente refinado por Hata [HATA80]. El original consistía en un análisis detallado de la zona de Tokio y generaba información sobre las pérdidas en cada trayectoria dentro de un entorno urbano. El modelo de Hata es una formulación empírica que tiene en consideración todo un abanico de entornos y condiciones. Para un entorno urbano, la pérdida predicha en la trayectoria es:

$$L_{dB} = 69,55 + 26,16\log f_c - 13,82\log h_t - A(h_r) + (44,9 - 6,55\log h_t)\log d$$
 (14.1)

donde

 f_c = frecuencia de la portadora en MHz desde 150 hasta 1.500 MHz.

 h_t = altura de la antena emisora (estación base) en m, desde 30 hasta 300 m.

 h_r = altura de la antena receptora (estación móvil) en m, desde 1 hasta 10 m.

d = distancia de propagación entre las antenas en km, de 1 a 20 km.

 $A(h_r)$ = factor de corrección para la altura de la antena móvil.

Para el caso de una ciudad pequeña o mediana, el factor de corrección viene dado por

$$A(h_r) = (1.1 \log f_c - 0.7)h_r - (1.56 \log f_c - 0.8) dB$$

El factor de corrección para ciudades grandes es

$$A(h_r) = 8,29[\log{(1,54h_r)}]^2 - 1,1 \text{ dB}$$
 para $f_c \le 300 \text{ MHz}$
 $A(h_r) = 3,2[\log{(11,75h_r)}]^2 - 4,97 \text{ dB}$ para $f_c \ge 300 \text{ MHz}$

Para estimar la pérdida en la trayectoria en un área suburbana, la expresión utilizada en la Ecuación (14.1) para entornos urbanos es modificada como se muestra a continuación

$$L_{\rm dB}({\rm suburbano}) = L_{\rm dB}({\rm urbano}) - 2[\log{(f_c/28)}]^2 - 5.4$$

Para el caso de la estimación de la pérdida en zonas abiertas, la expresión se modifica de la siguiente forma:

$$L_{dB}$$
(abierto) = L_{dB} (urbano) - 4,78(log f_c)² - 18,733(log f_c) - 40,98

El modelo de Okumura/Hata está considerado como uno de los mejores en términos de precisión en la predicción de la pérdida de propagación, a la vez que proporciona una forma práctica de estimar dicha pérdida en una amplia variedad de situaciones [FREE97, RAPP97].

Ejemplo [FREE97]. Sea $f_c = 900$ MHz, $h_t = 40$ m, $h_r = 5$ m y d = 10 km. Estímese la pérdida en la trayectoria para una ciudad de tamaño medio.

$$A(h_r) = (1,1 \log 900 - 0,7)5 - (1,56 \log 900 - 0,8) dB$$

$$= 12,75 - 3,8 = 8,95 dB$$

$$L_{dB} = 69,55 + 26,16 \log 900 - 13,82 \log 40 - 8,95$$

$$+ (44,9 - 6,55 \log 40) \log 10$$

$$= 69,55 + 77,28 - 22,14 - 8,95 + 34,4 = 150,14 dB$$

DESVANECIMIENTO EN ENTORNOS MÓVILES

Quizá el problema más desafiante desde un punto de vista técnico al que se enfrentan los ingenieros de sistemas de comunicaciones es el del desvanecimiento en un entorno móvil. El término desvanecimiento se refiere a la variación temporal de la potencia de la señal recibida causada por cambios en el medio de transmisión o en la trayectoria o trayectorias. En un entorno fijo, el desvanecimiento se debe a cambios en las condiciones atmosféricas, como la lluvia. Pero en un entorno móvil, donde una de las dos antenas se desplaza con respecto a la otra, la presencia de obstáculos cambia a lo largo del tiempo, creando así efectos de transmisión complejos.

Propagación multitrayectoria

Existen tres mecanismos de propagación que intervienen en el problema y que son ilustrados en la Figura 14.7. La **reflexión** ocurre cuando una señal electromagnética alcanza una superficie que es relativamente grande en comparación con la longitud de onda de la señal. Supongamos, por ejemplo, que se recibe una onda reflejada en la tierra y cercana a la unidad móvil. Dado que dicha onda posee un desplazamiento de fase de 180º tras la reflexión, la onda en la línea visual (LOS, *Line Of Sight*) y la onda reflejada tenderán a cancelarse, ocasionando una alta pérdida de señal². Además, aparecen interferencias multitrayectoria puesto que la antena móvil se encuentra a menor altura que la mayor parte de las estructuras artificiales en la zona. Estas ondas reflejadas pueden interferir constructivamente o destructivamente en el receptor.

La **difracción** aparece en el vértice de un cuerpo impenetrable cuyo tamaño es significativamente superior a la longitud de onda de la onda de radio. Cuando una onda de radio se encuentra con tal vértice, las ondas se propagan en diferentes direcciones con el vértice como fuente. Así, las señales pueden ser recibidas incluso cuando no existe una LOS libre de obstáculos desde el transmisor.

La **dispersión** aparece si el tamaño de un obstáculo es del orden de la longitud de onda de la señal o menor, ocasionando que la señal se disperse en varias señales más débiles. Existen varios objetos que pueden producir dispersión a las frecuencias de microondas típicas que se usan en redes celulares, como las farolas o las señales de tráfico. Esto hace que los efectos de dispersión sean difíciles de predecir.

² Por otro lado, la señal reflejada recorre un camino más largo, lo cual ocasiona un desplazamiento de fase debido al retardo relativo a la señal no reflejada. Cuando este retardo es equivalente a la mitad de la longitud de onda, las dos señales vuelven a poseer la misma fase.

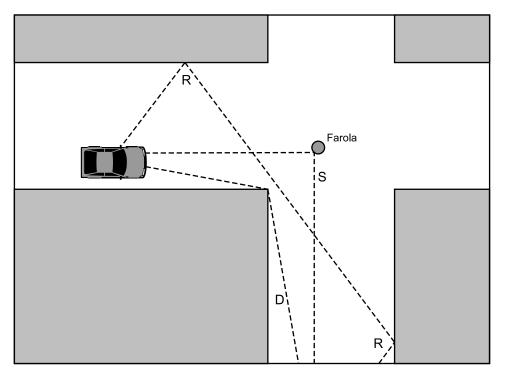


Figura 14.7. Ilustración de los tres mecanismos de propagación importantes: reflexión (R), dispersión (S) y difracción (D) [ANDE95].

Los tres efectos de propagación mencionados influyen en el rendimiento del sistema de varias formas, dependiendo de las condiciones locales y a medida que la estación móvil se desplaza dentro de una celda. Generalmente, tanto la difracción como la dispersión son efectos menores cuando la unidad móvil posee una LOS clara hacia el transmisor, aunque la reflexión puede alcanzar un impacto significativo. Si no existe una LOS clara, tal y como sucede en las calles de una zona urbana, entonces la difracción y la dispersión son las principales fuentes de problemas de recepción de la señal.

Efectos de la propagación multitrayectoria

Como acabamos de observar, uno de los efectos indeseables de la propagación multitrayectoria es que múltiples copias de una señal pueden ser recibidas con diferentes fases. Si estas fases se suman destructivamente, el nivel de la señal con respecto al ruido disminuye, haciendo más difícil la detección de la señal en el receptor.

Un segundo fenómeno de particular importancia para la transmisión digital es la interferencia intersimbólica (ISI, *Intersymbol Interference*). Supongamos que se envía un pulso estrecho a una determinada frecuencia a través de un enlace entre una antena fija y una unidad móvil. En la Figura 14.8 se muestra lo que el canal puede entregar al receptor si el impulso es enviado en dos instantes de tiempo distintos. La línea superior muestra los dos pulsos en el momento de ser transmitidos, mientras que en la inferior se hace lo propio con los pulsos resultantes en el receptor. En cada caso, el primer pulso recibido es la señal LOS deseada. Su magnitud puede cambiar debido a alteraciones en la atenuación atmosférica. Adicionalmente, la pérdida de la señal LOS se

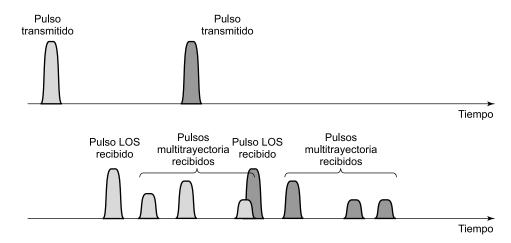


Figura 14.8. Dos pulsos en una multitrayectoria variable en el tiempo.

incrementa a medida que la unidad móvil se desplaza alejándose de la antena fija. Pero, además de este pulso primario, pueden aparecer múltiples pulsos secundarios debidos a la reflexión, difracción y dispersión. Supóngase ahora que el pulso codifica uno o más bits de datos. En ese caso, una o más copias retardadas del pulso pueden llegar al receptor al mismo tiempo que el pulso primario de un bit posterior, actuando como una forma de ruido frente a él y haciendo la recuperación de la información del bit más difícil.

La localización de los obstáculos cambia a medida que la antena móvil se desplaza, ocasionando que el número, magnitud y localización temporal de los pulsos secundarios también cambie. Esto dificulta el diseño de técnicas de procesamiento de la señal que filtren los efectos de la propagación multitrayectoria de tal forma que la señal deseada sea recuperada con fidelidad.

Tipos de desvanecimientos

Los efectos de desvanecimiento en un entorno móvil pueden ser clasificados como rápidos o lentos. Volviendo a la Figura 14.7, a medida que la unidad móvil se desplaza a lo largo de una calle en una zona urbana, aparecen variaciones rápidas de la potencia de la señal en distancias de alrededor de la mitad de la longitud de onda. A una frecuencia de 900 MHz, que es típica para aplicaciones móviles celulares, la longitud de onda es de 0,33 m. Los cambios de amplitud pueden llegar a ser de 20 o 30 dB en una distancia corta. Este tipo de fenómeno de desvanecimiento que ocasiona un cambio tan brusco, conocido como **desvanecimiento rápido**, afecta no sólo a los teléfonos móviles en automóviles, sino también a un usuario con un teléfono móvil caminando por la calle.

El entorno urbano cambia a medida que el usuario móvil recorre distancias superiores a la de la longitud de onda, moviéndose alrededor de edificios de diferentes alturas, zonas descubiertas, intersecciones, etc. A lo largo de estas distancias más largas, existe un cambio en el nivel de potencia media recibida sobre el cual se producen las fluctuaciones rápidas. A este cambio se le denomina **desvanecimiento lento**.

Alternativamente, los efectos de desvanecimiento pueden clasificarse como planos o selectivos. El **desvanecimiento plano**, también denominado no selectivo, es un tipo de desvanecimiento en el que todas las componentes en frecuencia de la señal recibida fluctúan en la misma proporción simultáneamente. El **desvanecimiento selectivo** afecta desigualmente a las distintas componentes

espectrales de una señal de radio. Usualmente, el término *desvanecimiento selectivo* es sólo significativo en comparación con el ancho de banda de todo el canal de comunicaciones. Si se produce una atenuación de una porción del ancho de banda de la señal, el desvanecimiento se considera selectivo; el desvanecimiento no selectivo implica que el ancho de banda de interés de la señal es más estrecho que el espectro afectado por el desvanecimiento y que se encuentra completamente cubierto por éste.

Mecanismos de compensación de errores

Los esfuerzos para compensar los diversos errores y distorsiones introducidos por el desvanecimiento multitrayectoria se pueden agrupar en tres categorías generales: corrección de errores hacia adelante, ecualización adaptativa y técnicas de diversidad. En un entorno móvil inalámbrico típico se combinan técnicas de las tres clases para combatir las tasas de errores que aparecen.

La **corrección de errores hacia adelante** se emplea en aplicaciones de transmisión digital: aquellas en las cuales las señales transmitidas transportan datos o voz o vídeo digitalizados. En aplicaciones móviles inalámbricas, la razón entre el número de bits totales enviados frente a los bits de datos enviados se encuentra generalmente entre 2 y 3. Esto puede parecer una cantidad excesiva de información de sobrecarga, puesto que la capacidad del sistema se limita a la mitad o una tercera parte de su potencial, pero los entornos móviles inalámbricos presentan unos índices de dificultad tales que estos niveles de redundancia son necesarios. En el Capítulo 6 se discuten las técnicas de corrección de errores hacia adelante.

La **ecualización adaptativa** puede aplicarse a las transmisiones que transportan información analógica (por ejemplo, voz o vídeo analógico) o información digital (por ejemplo, datos digitales o voz o vídeo digitalizado) y es utilizado para combatir la interferencia intersimbólica. El proceso de ecualización involucra algún método para reunir la energía dispersada de los símbolos y agruparla en torno al intervalo de tiempo correspondiente. La ecualización es un tema muy amplio y las técnicas que se emplean van desde el uso de los denominados circuitos analógicos de nudos hasta sofisticados algoritmos de procesamiento digital de señales.

La **diversidad** está basada en el hecho de que los canales individuales experimentan fenómenos de desvanecimiento independientes. Es posible, por tanto, compensar los efectos de error proporcionando de alguna forma múltiples canales lógicos entre el emisor y el receptor y enviando una parte de la señal sobre cada uno de ellos. Esta técnica no elimina los errores, sino que reduce la tasa de los mismos dispersando la transmisión para evitar que se vea sometida a la mayor tasa de errores que se pudiera producir. Las otras técnicas (ecualización y corrección de errores hacia adelante) pueden entonces hacer frente a la tasa de errores reducida.

Algunas técnicas de diversidad involucran al camino físico de la transmisión y son denominadas de **diversidad espacial**. Por ejemplo, una serie de antenas cercanas pueden ser utilizadas para recibir el mensaje, combinando las señales de alguna forma para reconstruir la señal más probable. Otro ejemplo es el uso de múltiples antenas direccionales ubicadas en el mismo punto, cada una orientada hacia un ángulo de recepción diferente, también con las señales combinadas para reconstruir la señal transmitida.

El término diversidad se utiliza más comúnmente para referirse a las técnicas de diversidad en frecuencia o en tiempo. En las técnicas de **diversidad en frecuencia**, la señal se disemina sobre un ancho de banda mayor o bien se transporta sobre varias portadoras a diferentes frecuencias. El ejemplo más importante de este enfoque es el espectro expandido, que se discute en el Capítulo 9.

14.2. PRIMERA GENERACIÓN ANALÓGICA

Las redes celulares telefónicas originales, a las que hoy nos referimos como sistemas de primera generación, proporcionaban canales analógicos de tráfico. Desde principios de 1980, el sistema de primera generación más común en Norteamérica ha sido el **Servicio Avanzado de Telefonía Móvil** (AMPS, *Advanced Mobile Phone Service*), desarrollado por AT&T. Este enfoque es habitual también en Sudamérica, Australia y China y, aunque está siendo gradualmente sustituido por los sistemas de segunda generación, AMPS todavía se utiliza. En esta sección se describe brevemente AMPS.

ASIGNACIÓN ESPECTRAL

En Norteamérica están reservadas dos bandas de 25 MHz para AMPS (*véase* Tabla 14.2), una para la transmisión desde la estación base hacia la unidad móvil (869-894 MHz) y otra para la transmisión desde la unidad móvil hacia la estación base (824-849 MHz). Cada una de estas bandas está dividida en dos para fomentar la competencia (es decir, de forma tal que puedan ser ubicados dos operadores). Así, a cada operador se le asignan únicamente 12,5 MHz en cada dirección para su sistema. Los canales se encuentran espaciados entre sí 30 kHz, lo que permite un total de 416 canales por operador. Están asignados 21 canales para control, de forma que quedan 395 canales para el transporte de llamadas. Los canales de control son canales de datos que funcionan a 10 kbps. Por otra parte, los canales de voz transportan la conversación en analógico utilizando modulación en frecuencia. La información de control se envía también sobre los canales de voz como datos en ráfagas. Dado que este número de canales no es adecuado para la mayor parte de los mercados, se hace necesario encontrar alguna forma de utilizar menos ancho de banda por conversación o bien reutilizar frecuencias. Ambas aproximaciones han sido utilizadas en las distintas aproximaciones a la telefonía móvil, siendo la reutilización de frecuencias la técnica empleada en el caso de AMPS.

Tabla 14.2. Parámetros de AMPS.

Banda de transmisión de la estación base	869 a 894 MHz				
Banda de transmisión de la unidad móvil	824 a 849 MHz				
Espaciado entre los canales de ida y de retorno	45 MHz				
Ancho de banda de cada canal	30 kHz				
Número de canales de voz full-duplex	790				
Número de canales de control full-duplex	42				
Potencia máxima de la unidad móvil	3 vatios				
Tamaño de celda (radio)	2 a 20 km				
Modulación, canal de voz	FM, 12 kHz de desviación de pico				
Modulación, canal de control	FSK, 8 kHz de desviación de pico				
Tasa de transmisión de datos	10 kbps				
Código de control de errores	BCH (48, 36, 5) y (40, 28, 5)				

FUNCIONAMIENTO

Cada teléfono celular compatible con AMPS incluye un *módulo de asignación de número* (NAM, *Numeric Assignment Module*) en una memoria de sólo lectura. El NAM contiene el número de teléfono del terminal asignado por el proveedor del servicio, así como el número de serie asignado por el fabricante. Cuando se enciende el teléfono, éste envía su número de serie y su número de teléfono hacia la MTSO (*véase* Figura 14.5). La MTSO mantiene una base de datos con información sobre las unidades móviles que han sido declaradas robadas y utiliza los números de serie para bloquear dichas unidades. Por otro lado, la MTSO utiliza el número de teléfono para gestionar la facturación. Si el teléfono está siendo utilizado en una ciudad remota, el coste del servicio es cargado al proveedor local del usuario.

Cuando tiene lugar una llamada se produce la siguiente secuencia de eventos [COUC01]:

- El abonado inicia la llamada tecleando el número de teléfono destino y pulsando la tecla de envío.
- **2.** La MTSO verifica que el número de teléfono es válido y que el usuario dispone de autorización para realizar la llamada. Algunos proveedores de servicios requieren que el usuario introduzca un número de identificación personal (PIN, *Personal Identification Number*) además del número de teléfono a llamar para verificar que el teléfono no ha sido robado.
- **3.** La MTSO envía un mensaje al teléfono celular del usuario indicándole los canales de tráfico que se usarán para el envío y la recepción.
- **4.** La MTSO envía una señal de llamada al usuario llamado. Todas estas operaciones (pasos del 2 al 4) ocurren dentro de los 10 s posteriores al inicio de la llamada.
- **5.** Cuando la parte llamada responde, la MTSO establece un circuito entre las dos partes involucradas y comienza a registrar la información pertinente para la facturación.
- **6.** Cuando una de las partes cuelga, la MTSO libera el circuito y los canales de radio y finaliza el registro de información de facturación.

CANALES DE CONTROL EN AMPS

Cada servicio AMPS incluye 21 canales de control *full-duplex* de 30 kHz, consistentes en 21 canales de control de retorno (RCC, *Reverse Control Channels*) desde el abonado hacia la estación base y 21 canales de ida desde la estación base al abonado. Estos canales transmiten datos digitales usando FSK, enviándose éstos en tramas en ambos tipos de canales.

La información de control puede transmitirse sobre un canal de voz durante una conversación en curso. La unidad móvil o la estación base pueden insertar una ráfaga de datos desconectando la transmisión FM de voz durante unos 100 ms y reemplazándola por un mensaje codificado con FSK. Estos mensajes son utilizados para el intercambio de información urgente, como cambios en el nivel de potencia y traspasos.

14.3. CDMA DE SEGUNDA GENERACIÓN

Esta sección comienza comentando algunas líneas generales para pasar a continuación a examinar en detalle un tipo de sistema celular de segunda generación.

SISTEMAS CELULARES DE PRIMERA Y SEGUNDA GENERACIÓN

Las redes celulares de primera generación, como AMPS, se volvieron populares tan rápidamente que surgió la amenaza de saturarse la capacidad disponible del sistema. Los sistemas de segunda generación han sido desarrollados para proporcionar señales de una calidad superior, con mayor velocidad de datos para soportar servicios digitales y una mayor capacidad. En [BLAC99b] se enumeran los siguientes puntos como diferencias clave entre las dos generaciones:

- Canales de tráfico digitales: la diferencia más notable entre las dos generaciones es que, mientras que los sistemas de primera generación son casi puramente analógicos, los de segunda son digitales. En concreto, los sistemas de primera generación están diseñados para soportar canales de voz usando FM; el tráfico digital se soporta únicamente mediante el uso de un módem que convierte los datos digitales a una forma analógica. Los sistemas de segunda generación proporcionan canales digitales de tráfico que soportan directamente los datos digitales. El tráfico de voz es codificado en forma digital previamente a su transmisión. Por supuesto, en los sistemas de segunda generación, el tráfico de usuario (voz o datos) debe ser convertido a una señal analógica para su transmisión entre la unidad móvil y la estación base (por ejemplo, *véase* la Figura 5.15).
- Cifrado: debido a que todo el tráfico del usuario, así como el tráfico de control, está digitalizado en los sistemas de segunda generación, es una cuestión relativamente simple su cifrado para prevenir las escuchas clandestinas. Todos los sistemas de segunda generación proporcionan esta capacidad, al contrario que los de primera generación que envían el tráfico en claro, sin seguridad alguna.
- **Detección y corrección de errores:** el flujo de tráfico digital en sistemas de segunda generación se presta al uso de técnicas de detección y corrección de errores como las descritas en el Capítulo 6. El resultado puede ser una recepción muy clara de la voz.
- Acceso a los canales: en los sistemas de primera generación, cada celda soporta un número de canales. En un instante de tiempo determinado, un canal es asignado únicamente a un usuario. Los sistemas de segunda generación proporcionan de igual forma varios canales por celda, pero cada canal se comparte dinámicamente por un número de usuarios mediante el uso de acceso múltiple por división en el tiempo (TDMA) o acceso múltiple por división de código (CDMA). En esta sección describiremos los sistemas basados en CDMA.

A partir de 1990 se han desarrollado y desplegado diferentes sistemas de segunda generación. Un buen ejemplo lo constituye el esquema IS-95 usando CDMA.

ACCESO MÚLTIPLE POR DIVISIÓN DE CÓDIGO

El uso de CDMA para sistemas celulares se puede describir como sigue. Al igual que con FDMA, a cada celda se le asigna una banda de frecuencias que es dividida en dos partes, la mitad para el retorno (unidad móvil a estación base) y la otra mitad para la ida (estación base a unidad móvil). Para comunicaciones *full-duplex*, una unidad móvil utiliza tanto el canal de ida como el de retorno. La transmisión se produce en la forma de espectro expandido de secuencia directa (DS-SS, *Direct-Sequence Spread Spectrum*), el cual utiliza un código de minibits (*chips*) para incrementar la velocidad de datos de la transmisión, resultando en un ancho de banda aumentado para la señal. El acceso múltiple se consigue asignando códigos de minibits ortogonales a los distintos usuarios, de tal forma que el receptor puede recuperar la transmisión de una unidad individual a partir de varias transmisiones.

CDMA presenta una serie de ventajas para su uso en una red celular:

- **Diversificación de frecuencias:** puesto que la transmisión es expandida sobre un ancho de banda amplio, los factores dependientes de la frecuencia que perjudican la transmisión, como las ráfagas de ruido y el desvanecimiento selectivo, ocasionan un efecto menor en la señal.
- Resistencia multitrayectoria: además de la capacidad de DS-SS para combatir el desvanecimiento multitrayectoria mediante la diversificación de frecuencias, los códigos de minibits utilizados para CDMA no sólo exhiben una baja correlación cruzada sino también una baja autocorrelación. Por tanto, una versión de la señal retardada en más del intervalo de un *chip* no interfiere con la señal dominante tanto como en otros entornos multitrayectoria.
- **Privacidad:** la privacidad es inherente dado que el espectro expandido se obtiene mediante señales del tipo del ruido, poseyendo cada usuario un código único.
- **Degradación ordenada:** con el uso de FDMA o TDMA, un número fijo de usuarios pueden acceder al sistema simultáneamente. Con CDMA, sin embargo, a medida que más usuarios acceden al sistema a la vez, el nivel de ruido y, por tanto, la tasa de errores, se incrementa; el sistema se degrada siempre gradualmente hasta el punto en que la tasa de errores es inaceptable.

Dos inconvenientes del uso celular de CDMA deben también mencionarse:

- Autointerferencias: a no ser que todos los usuarios móviles se encuentren perfectamente sincronizados, las transmisiones que se reciben procedentes de diferentes usuarios no estarán perfectamente alineadas en cuanto a las fronteras de los códigos de minibits. Así, las secuencias expandidas de los distintos usuarios no serán ortogonales y existirá cierto nivel de correlación cruzada. Éste no es el caso de TDMA o FDMA, en los que las señales recibidas son ortogonales (o casi) si se emplean bandas razonables de protección en tiempo o frecuencia, respectivamente.
- El problema cerca-lejos: las señales cercanas al receptor se reciben con menor atenuación que las señales lejanas. Dada la ausencia de una ortogonalidad completa, las transmisiones procedentes de las estaciones móviles más lejanas pueden ser más difíciles de recibir.

CONSIDERACIONES DE DISEÑO DE CDMA MÓVIL INALÁMBRICO

Antes de entrar en detalle con el ejemplo de IS-95, resulta útil considerar algunos aspectos generales sobre el diseño de un sistema celular CDMA.

El receptor RAKE

En un entorno de propagación multitrayectoria, como es el caso común de los sistemas celulares, si las múltiples versiones de una señal alcanzan más de un intervalo de minibit diferente, el receptor puede recuperar la señal correlacionando la secuencia del minibit con la señal dominante recibida, otorgando al resto de señales el tratamiento de ruido. No obstante, es posible obtener un rendimiento superior si el receptor intenta recuperar las señales procedentes de diferentes trayectorias, con retardos aceptables, y combinarlas apropiadamente. Este principio es el empleado en el receptor RAKE.

La Figura 14.9 ilustra el principio de funcionamiento del receptor RAKE. La señal binaria original que va a ser transmitida es expandida utilizando la operación lógica O-exclusivo (XOR) con

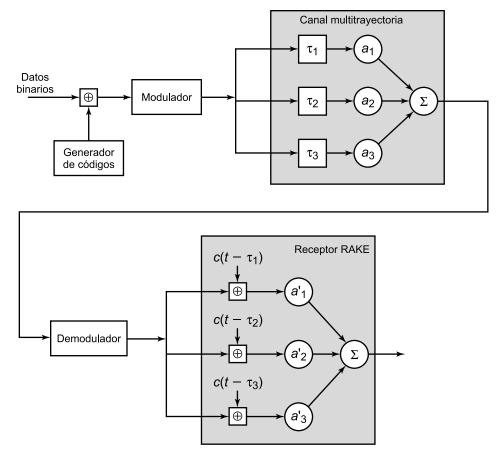


Figura 14.9. Principio de funcionamiento del receptor RAKE [PRAS98].

el código de *chips* del transmisor. La secuencia expandida se modula entonces para su transmisión sobre el canal inalámbrico. Debido a los efectos de la propagación multitrayectoria, el canal genera múltiples copias de la señal, cada una con un retardo temporal diferente $(\tau_1, \tau_2,$ etc.) y un factor de atenuación distinto $(a_1, a_2,$ etc.). En el receptor se demodulan las señales combinadas. El flujo de códigos se inyecta entonces en varios correladores, cada uno retardado en una cantidad de tiempo distinta. Las señales resultantes se combinan utilizando los factores de ponderación estimados para el canal.

IS-95

El esquema CDMA de segunda generación más ampliamente utilizado es el IS-95, que se encuentra desplegado principalmente en Norteamérica. Las estructuras de transmisión sobre los enlaces de ida y retorno son diferentes y se describen separadamente.

ENLACE DE IDA EN IS-95

En la Tabla 14.3 se listan los parámetros del enlace del canal de ida. El enlace de ida se compone de hasta 64 canales lógicos CDMA, cada uno ocupando el mismo ancho de banda de 1.228 kHz (*véase* Figura 14.10a). Éste soporta cuatro tipos de canales:

Canal	Sincroni- zación	Localización		Conjunto de velocidades de tráfico 1				Conjunto de velocidades de tráfico 2			
Tasa de datos (bps)	1.200	4.800	9.600	1.200	2.400	4.800	9.600	1.800	3.600	7.200	14.400
Repetición de código	2	2	1	8	4	2	1	8	4	2	1
Tasa de modulación de símbolos (sps)	4.800	19.200	19.200	19.200	19.200	19.200	19.200	19.200	19.200	19.200	19.200
Minibits PN/símbolo de modulación	256	64	64	64	64	64	64	64	64	64	64
Minibits PN/bit	1.024	256	128	1.024	512	256	128	682,67	341,33	170,67	85,33

Tabla 14.3. Parámetros de canal para el enlace de ida en IS-95.

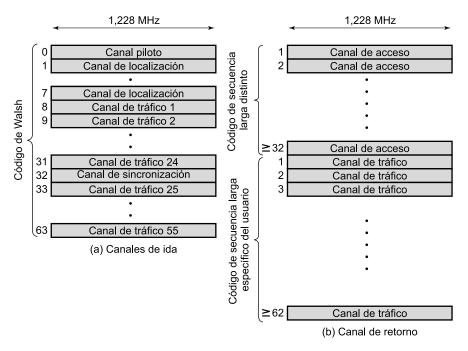


Figura 14.10. Estructura de canales en IS-95.

- Piloto (canal 0): transporta una señal continua en un canal único. Este canal permite a la unidad móvil adquirir información de temporización, suministra una fase de referencia para el proceso de demodulación y proporciona un mecanismo para comparar la potencia de la señal con objeto de determinar el traspaso. El canal piloto se compone de una señal con todo ceros.
- Sincronización (canal 32): se trata de un canal de 1.200 bps utilizado por la estación móvil para obtener la información de identificación pertinente sobre el sistema celular (tiempo del sistema, estado del código de secuencia larga, revisión del protocolo, etc.).
- Localización (canales 1 al 7): contiene mensajes para una o más estaciones móviles.

• Tráfico (canales 8 al 31 y 33 al 63): el enlace de ida soporta 55 canales de tráfico. La especificación original soportaba velocidades de transmisión de datos de hasta 9.600 bps. Una revisión posterior añadió un segundo conjunto de velocidades de hasta 14.400 bps.

Obsérvese que todos estos canales utilizan el mismo ancho de banda, utilizándose el código de minibits para distinguir entre ellos. Para el canal de ida, los códigos de minibits son los 64 códigos ortogonales de 64 bits derivados de una matriz 64 × 64 conocida como la matriz de Walsh (analizada en [STAL02]).

La Figura 14.11 muestra las etapas de procesamiento para la transmisión sobre un canal de tráfico de ida usando el conjunto de velocidades 1. Para el tráfico de voz, el habla se codifica a una tasa de datos de 8.550 bps, que resultan en 9.600 bps tras la inserción de bits adicionales para la

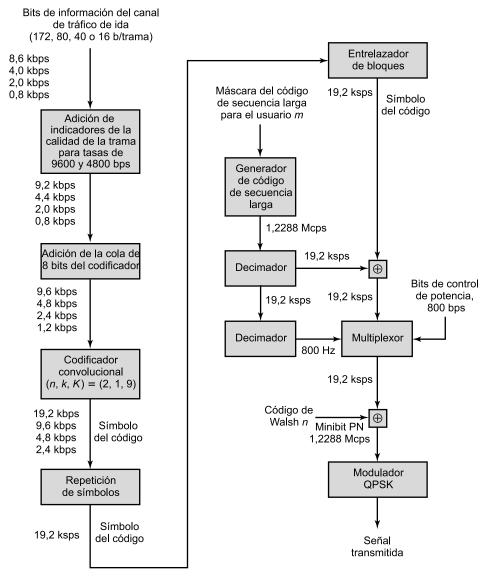


Figura 14.11. Transmisión sobre el enlace de ida en IS-95.

detección de errores. La capacidad total del canal no se emplea cuando el usuario no está hablando. Durante los periodos de silencio, la tasa de datos se reduce incluso hasta 1.200 bps. La tasa de 2.400 bps es utilizada para transmitir transitorios en el ruido de fondo y la de 4.800 bps se usa para combinar el habla digitalizada con datos de señalización.

Los datos o el habla digitalizada se transmiten en bloques de 20 ms con corrección de errores hacia adelante proporcionada por un codificador convolucional con una tasa de 1/2, doblando así la tasa de datos efectiva hasta un máximo de 19,2 kbps. Para tasas de datos inferiores, los bits de salida del codificador (llamados símbolos de código) son replicados hasta alcanzar la tasa de 19,2 kbps. Los datos se entrelazan entonces en bloques para reducir los efectos de los errores mediante su expansión.

A continuación de este entrelazado, los bits de datos son mezclados. El propósito de esta etapa es servir como una máscara de privacidad así como para prevenir el envío de patrones repetitivos, lo que a su vez reduce la probabilidad de que los usuarios transmitan a la potencia de pico al mismo tiempo. La mezcla se lleva a cabo por medio de un código de secuencia larga que se genera como un número pseudoaleatorio a partir de un registro de desplazamiento de 42 bits. El registro de desplazamiento se inicializa con el número electrónico de serie del usuario. La salida del generador del código de secuencia larga se produce a una velocidad de 1,2288 Mbps, que es 64 veces la velocidad de 19,2 kbps, por lo que sólo un bit de cada 64 es seleccionado (por la función de decimación). Al flujo resultante se le aplica la operación XOR con la salida del módulo responsable de entrelazar el bloque.

La siguiente etapa en el procesamiento inserta información concerniente al control de potencia en el canal de tráfico, con objeto de controlar la potencia de salida de la antena. La función de control de potencia de la estación base captura bits del canal de tráfico a una velocidad de 800 bps. Éstos son insertados como bits de código robados. El canal de 800 bps transporta información directamente a la unidad móvil para aumentar, disminuir o mantener estable su nivel de salida actual. Este flujo de control de potencia se multiplexa en los 19,2 kbps reemplazando algunos de los bits de código, usando el generador del código de secuencia larga para codificar los bits.

El siguiente paso en el proceso lo constituye la función DS-SS, que dispersa los 19,2 kbps a una tasa de 1,2288 Mbps utilizando una fila de la matriz 64 × 64 de Walsh. Una fila de la matriz se asigna a una estación móvil durante la configuración de la llamada. Si se presenta un bit 0 a la función XOR, los 64 bits de la fila asignada son enviados. En el caso de un bit 1 se envía el resultado de la función XOR bit a bit de la fila. Así, la tasa de bits final es 1,2288 Mbps. Este flujo digital de bits se modula a continuación sobre la portadora usando un esquema de modulación QPSK. Recuérdese del Capítulo 5 que QPSK incluye la creación de dos flujos de bits que son modulados separadamente (*véase* Figura 5.11). En el sistema IS-95, los datos se dividen en los canales I y Q (en fase y en cuadratura) y a los datos en cada canal se les aplica una operación XOR con un código de secuencia corta único. Los códigos de secuencia corta se generan como números pseudoaleatorios a partir de un registro de desplazamiento de 15 bits.

ENLACE DE RETORNO EN IS-95

En la Tabla 14.4 se listan los parámetros del enlace del canal de retorno. En enlace de retorno se compone de hasta 94 canales lógicos CDMA, cada uno ocupando el mismo ancho de banda de 1228 kHz (*véase* Figura 14.10b). El enlace de retorno soporta hasta 32 canales de acceso y hasta 62 canales de tráfico.

Canal	Acceso	Conjunto de velocidades de tráfico 1				Conjunto de velocidades de tráfico 2				
Tasa de datos (bps)	4.800	1.200	2.400	4.800	9.600	1.800	3.600	7.200	14.400	
Tasa de código	1/3	1/3	1/3	1/3	1/3	1/2	1/2	1/2	1/2	
Tasa de símbolos antes de la repetición (sps)	14.400	3.600	7.200	14.400	28.800	3.600	7.200	14.400	28.800	
Repetición de símbolos	2	8	4	2	1	8	4	2	1	
Tasa de símbolos tras la repetición (sps)	28.800	28.800	28.800	28.800	28.800	28.800	28.800	28.800	28.800	
Ciclo obligatorio de transmisión	1	1/8	1/4	1/2	1	1/8	1/4	1/2	1	
Símbolos de código/símbolo de modulación	6	6	6	6	6	6	6	6	6	
Minibits PN/símbolo de modulación	256	256	256	256	256	256	256	256	256	
Minibits PN/bit	256	128	128	128	128	256/3	256/3	256/3	256/3	

Tabla 14.4. Parámetros de canal para el enlace de retorno en IS-95

Los canales de tráfico en el enlace de retorno son únicos para cada móvil. Cada estación posee una máscara de código de secuencia larga única basada en su número de serie electrónico. La máscara de código largo es un número de 42 bits, lo que permite un total de $2^{42} - 1$ máscaras diferentes. Las unidades móviles usan el canal de acceso para iniciar las llamadas, responder a un mensaje en el canal de localización procedente de la estación base y para actualizaciones de la ubicación.

La Figura 14.12 muestra las etapas de procesamiento para la transmisión sobre el canal de tráfico de retorno utilizando el conjunto de velocidades 1. Las primeras etapas son las mismas que se utilizan en el canal de ida. Para el caso del canal de retorno, el codificador convolucional posee una tasa de 1/3, triplicando así la tasa de datos efectiva hasta un máximo de 28,8 kbps. A continuación, los bloques de datos son entrelazados.

La siguiente etapa consiste en la expansión de los datos usando la matriz de Walsh. Tanto la forma en que se utiliza la matriz como su propósito son diferentes en este caso de los correspondientes al canal de ida. En el canal de retorno, los datos procedentes del entrelazado de bloques están agrupados en unidades de 6 bits. Cada unidad de 6 bits se usa como un índice para seleccionar una fila de la matriz de Walsh 64×64 ($2^6 = 64$), de tal forma que la entrada es sustituida por la correspondiente fila. La tasa de datos se ve incrementada así por un factor de 64/6 hasta alcanzar los 307,2 kbps. El objetivo de esta codificación es mejorar la recepción en la estación base. Dado que las 64 codificaciones posibles son ortogonales, la codificación en bloque mejora el algoritmo de toma de decisiones en el receptor y es, además, computacionalmente eficiente (véase [PETE95] para más detalles). Es posible ver esta modulación de Walsh como una forma de código de corrección de errores en bloque con (n, k) = (64, 6) y $d_{min} = 32$. De hecho, todas las distancias son 32.

La introducción de aleatoriedad en la ráfaga de datos se implementa para ayudar a reducir la interferencia con otras estaciones móviles (en [BLAC99b] se expone una discusión). Esta operación incluye el uso de la máscara del código de secuencia larga para suavizar los datos salientes sobre cada trama de 20 ms.

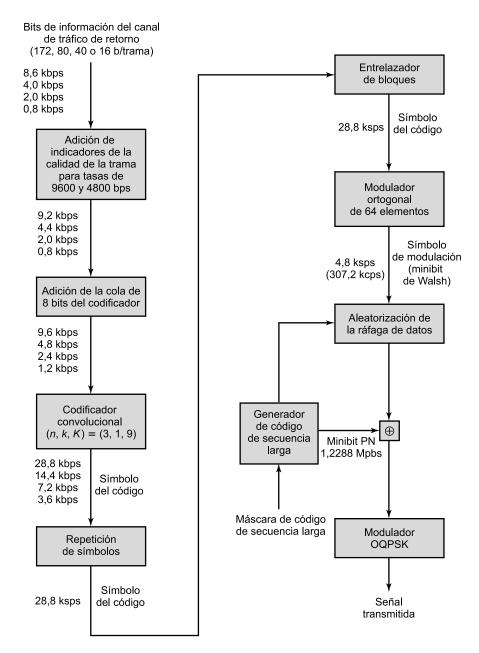


Figura 14.12. Transmisión sobre el enlace de retorno en IS-95.

La siguiente etapa en el proceso está constituida por la función DS-SS. En el caso del canal de retorno, se aplica la operación XOR entre el código de secuencia larga único para el móvil y el flujo de salida tras la aleatorización, produciendo un flujo final de datos de 1,2288 Mbps. Este flujo digital se modula sobre la portadora utilizando un esquema de modulación QPSK ortogonal. Éste se diferencia del utilizado en el canal de ida en el uso de un elemento de retardo en el modulador (*véase* Figura 5.11) con objeto de producir la ortogonalidad. La razón por la que los moduladores son diferentes es que, mientras en el canal de ida los códigos para la dispersión son

ortogonales (procedentes de la matriz de Walsh) en el caso del canal de retorno la ortogonalidad de los códigos de dispersión no está garantizada.

14.4. SISTEMAS DE TERCERA GENERACIÓN

El objetivo de la tercera generación (3G) de comunicaciones inalámbricas es proporcionar adecuadamente comunicaciones inalámbricas de alta velocidad para soportar no sólo voz, sino también multimedia, datos y vídeo. La iniciativa para el año 2000 de las Comunicaciones Móviles Internacionales de la ITU (IMT-2000) ha definido la visión de la ITU de las capacidades de los sistemas de tercera generación como sigue:

- Calidad de voz comparable a la red conmutada pública de telefonía.
- Tasa de datos de 144 kbps disponible para usuarios desplazándose a velocidad elevada en vehículos motorizados sobre una zona extensa.
- 384 kbps disponibles para peatones detenidos o moviéndose a baja velocidad sobre zonas pequeñas.
- Soporte (para ser introducido en una etapa posterior) de 2,048 Mbps para uso de oficina.
- Tasas de transmisión de datos simétricas y asimétricas.
- Soporte para servicios de datos de conmutación de paquetes y conmutación de circuitos.
- Una interfaz adaptativa para Internet que refleje eficientemente la asimetría común entre el tráfico entrante y el saliente.
- Uso más eficiente, en general, del espectro disponible.
- Soporte para una amplia variedad de equipos móviles.
- Flexibilidad para permitir la introducción de nuevos servicios y tecnologías.

En términos generales, una de las directrices que con más fuerza está orientando la tecnología moderna de las comunicaciones es la tendencia hacia servicios de telecomunicaciones personales universales y acceso universal a las comunicaciones. El primero de los términos se refiere a la capacidad de una persona para identificarse fácilmente y usar, como un único abonado, cualquier sistema de comunicaciones en los dominios de un país, un continente, o incluso globalmente. El segundo concepto hace referencia a la capacidad de un usuario para utilizar su terminal en una variedad de entornos para conectarse a los servicios de información (por ejemplo, tener un terminal portátil que funcione igualmente en la oficina, en casa o a bordo de un avión). Esta revolución en la computación personal involucrará, obviamente y de una forma crucial, la presencia de comunicaciones inalámbricas.

Los servicios de comunicaciones personales (PCS, *Personal Communications Services*) y la redes de comunicaciones personales (PCN, *Personal Communications Networks*) son términos inexorablemente relacionados con estos conceptos de comunicaciones inalámbricas globales y forman parte de los objetivos de la tercera generación.

En general, la tecnología que se planifica es digital y utiliza acceso múltiple por división en el tiempo o por división de código para proporcionar una elevada capacidad y un uso eficiente del espectro.

Los terminales de bolsillo para PCS están diseñados para consumir poca potencia y ser relativamente pequeños y ligeros. Se están llevando a cabo esfuerzos considerables internacionalmente para permitir que los mismos terminales puedan ser utilizados en el mundo entero.

INTERFACES ALTERNATIVAS

La Figura 14.13 muestra los esquemas alternativos que han sido adoptados como parte de IMT-2000. La especificación cubre un conjunto de interfaces de radio para optimizar el rendimiento en diferentes entornos de radio. Una de las principales razones para la inclusión de cinco interfaces alternativas era permitir una evolución progresiva a partir de los sistemas existentes de primera y segunda generación y los de 3G.

Las cinco alternativas reflejan la evolución acaecida desde la segunda generación. Dos de las especificaciones surgen del trabajo del Instituto Europeo de Estándares de Telecomunicaciones (ETSI, European Telecommunications Standards Institute) para desarrollar un sistema universal de telecomunicaciones móviles (UMTS, Universal Mobile Telecommunications System) como estándar inalámbrico europeo de 3G. UMTS incluye dos estándares. Uno de ellos es el conocido como CDMA de banda ancha o W-CDMA. Este esquema explota completamente la tecnología CDMA para proporcionar tasas de datos elevadas con un uso eficiente del ancho de banda. La Tabla 14.5 muestra algunos de los parámetros fundamentales de W-CDMA. El otro esfuerzo europeo bajo UMTS es el conocido como IMT-TC o TD-CDMA. Este enfoque es una combinación de las tecnologías W-CDMA y TDMA. Se pretende que IMT-TC proporcione una infraestructura para la actualización de los sistemas GSM basados en TDMA.

Tabla 14.5. Parámetros de W-CDMA.

Ancho de banda del canal	5 MHz				
Estructura del canal RF de ida	Expansión directa				
Tasa de minibits	3,84 Mcps				
Longitud de trama	10 ms				
Número de ranuras/trama	15				
Modulación de expansión	QPSK balanceado (ida) Canal dual QPSK (retorno) Circuito de expansión compleja				
Modulación de datos QPSK (ida) BPSK (retorno)					
Detección coherente	Símbolos piloto				
Multiplexación del canal de retorno	Canales de control y piloto multiplexados en tiempo Multiplexación I y Q para canales de datos y control				
Multitasa	Diversas expansiones y multicódigo				
Factores de expansión	4 a 256				
Control de potencia	Bucle abierto y bucle cerrado rápido (1,6 kHz)				
Expansión (ida)	Secuencias ortogonales de longitud variable para la separación de canales. Secuencias estrella (<i>gold sequences</i>) 2 ¹⁸ para la separación entre usuario y celda.				
Expansión (retorno)	Igual que en el de ida, con distintos desplazamientos temporales en los canales I y Q.				

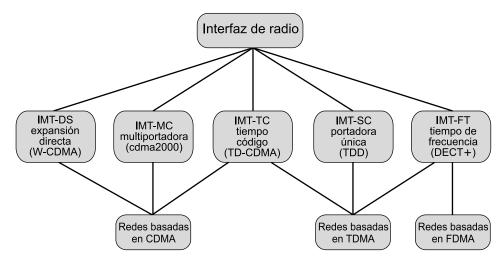


Figura 14.13. Interfaces de radio terrestres de IMT-2000.

Otro sistema basado en CDMA, conocido como cdma2000, tiene un origen norteamericano. Este esquema es similar a W-CDMA, aunque incompatible con él, en parte porque los estándares utilizan diferentes tasas de minibits. Además, cdma2000 utiliza una técnica conocida como multiportadora que no se emplea en W-CDMA.

Las otras dos especificaciones de interfaces se muestran en la Figura 14.13. IMT-SC está diseñado primordialmente para redes que soporten únicamente TDMA. IMT-FC puede ser utilizado tanto por portadoras FDMA como TDMA para proporcionar algunos servicios 3G, procediendo del estándar de telecomunicaciones europeas digitales sin cable (DECT, *Digital European Cordless Telecommunications*).

CONSIDERACIONES DE DISEÑO DE CDMA

La tecnología dominante en los sistemas 3G es CDMA. Aunque se han adoptado tres esquemas CDMA diferentes, todos ellos comparten algunos criterios de diseño. En [OJAN98] se enumeran los siguientes:

- Ancho de banda: un objetivo de diseño importante para todos los sistemas 3G es limitar la utilización del canal a 5 MHz. Existen varias razones que justifican este hecho. Por un lado, un ancho de banda de 5 MHz o superior mejora la capacidad del receptor para resolver los efectos multitrayectoria cuando se compara con anchos de banda más reducidos. Por otro lado, el espectro disponible se encuentra limitado por las necesidades de competencia, y 5 MHz es un límite superior razonable que puede ser asignado a los sistemas 3G. Por último, un ancho de banda de 5 MHz es apropiado para soportar tasas de datos de 144 y 384 kbps, siendo éste un objetivo primordial de los servicios 3G.
- Tasa de minibits: dado el ancho de banda disponible, la tasa de minibits depende de la tasa de datos deseada, las necesidades de control de errores y las limitaciones del ancho de banda. Una tasa de minibits de 3 Mcps o superior es razonable supuestos estos parámetros de diseño.
- Multitasa: el término *multitasa* se refiere a la provisión de múltiples canales lógicos con una tasa de datos fija a un usuario dado, presentando cada canal lógico una tasa diferente.

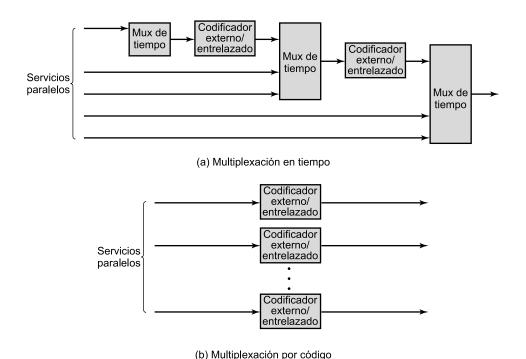


Figura 14.14. Principios de multiplexación en tiempo y por código [OJAN98].

Además, el tráfico en cada canal lógico puede ser conmutado independientemente a través de las redes inalámbricas o fijas hacia diferentes destinos. La ventaja de la multitasa es que el sistema puede soportar de una forma flexible varias aplicaciones simultáneas de un mismo usuario, utilizando de una forma eficiente la capacidad disponible mediante el uso de únicamente aquella capacidad que sea requerida por cada servicio. La multitasa se puede lograr con un esquema TDMA dentro de un mismo canal CDMA, asignando un número diferente de ranuras por trama para conseguir las distintas tasas de datos. Todos los subcanales que operen a una tasa de datos dada podrían ser protegidos mediante técnicas de corrección de errores y entrelazado (*véase* Figura 14.14a). Una alternativa es el uso de varios códigos CDMA, con codificación y entrelazado separados, proyectando cada uno de ellos sobre un canal CDMA diferente (*véase* Figura 14.14b).

14.5. LECTURAS Y SITIOS WEB RECOMENDADOS

[BERT94] y [ANDE95] son revisiones instructivas de los efectos de propagación en comunicaciones celulares inalámbricas. [BLAC99] es uno de los mejores tratamientos técnicos de los sistemas celulares de segunda generación.

[TANT98] contiene reimpresiones de varios artículos importantes concernientes al uso de CDMA en redes celulares. [DINA98] proporciona una introducción de los códigos de expansión, tanto PN como los ortogonales, para redes celulares CDMA.

[OJAN98] proporciona una introducción a las consideraciones técnicas de diseño que son claves para los sistemas 3G. Otra revisión útil es [ZENG00], mientras que [PRAS00] contiene un análisis mucho más detallado.

- ANDE95 Anderson, J.; Rappaport, T.; y Yoshida, S. «Propagation Measurements and Models for Wireless Communications Channels.» *IEEE Communications Magazine*, enero 1995.
- BERT94 Bertoni, H.; Honcharenko, W.; Maciel, L.; y Xia, H. «UHF Propagation Prediction for Wireless Perrsonal Communications.» *Proceedings of the IEEE*, septiembre 1994.
- BLAC99 Black, U. Second-Generation Mobile and Wireless Networks. Upper Saddle River, NJ: Prentice Hall, 1999.
- DINA98 Dinan, E., y Jabbari, B. «Spreading Codes for Direct Sequence CDMA and Wideband CDMA Cellular Networks.» *IEEE Communications Magazine*, septiembre 1998.
- OJAN98 Ojanpera, T., y Prasad, G. «An Overview of Air Interface Multiple Access for IMT-2000/UMTS.» *IEEE Communications Magazine*, septiembre 1998.
- PRAS00 Prasad, R.; Mohr, W.; y Konhauser, W., eds. *Third-Generation Mobile Communication Systems*. Boston: Artech House, 2000.
- TANT98 Tantaratana, S., y Ahmed, K., eds. *Applications of Spread Spectrum Systems: Selected Readings.* Piscataway, NJ: IEEE Press, 1998.
- ZENG00 Zeng, M.; Annamalai, A.; y Bhargava, V. «Harmonization of Global Third-Generation Mobile Systems. *IEEE Communications Magazine*, diciembre 2000.

SITIOS WEB RECOMENDADOS

- Asociación de Telecomunicaciones Celulares e Internet: consorcio de industrias que proporciona información sobre diversas aplicaciones de la tecnología inalámbrica.
- Grupo de Desarrollo CDMA: contiene, en general, información y enlaces sobre IS-95 y CDMA.
- 3G Americas: grupo comercial formado por empresas del hemisferio oeste que soportan diversos esquemas de segunda y tercera generación. Contiene noticias de la industria, documentos de formación y otra información técnica.

14.6. TÉRMINOS CLAVE, CUESTIONES DE REPASO Y EJERCICIOS

TÉRMINOS CLAVE

Acceso múltiple por división de código (CDMA) canal de ida canal de retorno control de potencia desvanecimiento desvanecimiento plano desvanecimiento rápido desvanecimiento selectivo

difracción dispersión diversidad diversidad en frecuencia

diversidad espacial ecualización adaptativa

estación base

factor de reutilización

radio móvil red celular red de primera generación (1G) red de segunda generación (2G) red de tercera generación (3G) reflexión

reutilización de frecuencias Servicio Avanzado de Telefonía Móvil (AMPS) traspaso

CUESTIONES DE REPASO

- **14.1.** ¿Qué forma geométrica se utiliza en el diseño de un sistema celular?
- 14.2. ¿Cuál es el principio de la reutilización de frecuencias en el contexto de una red celular?
- **14.3.** Enumere cinco formas de incrementar la capacidad de un sistema celular.
- **14.4.** Explique la función de localización de un sistema celular.
- **14.5.** ¿Qué es el desvanecimiento?
- **14.6.** ¿Cuál es la diferencia entre la difracción y la dispersión?
- **14.7.** ¿Qué diferencia existe entre el desvanecimiento rápido y el lento?
- **14.8.** ¿Cuál es la diferencia entre el desvanecimiento plano y el selectivo?
- **14.9.** ¿Qué diferencias clave existen entre los sistemas celulares de primera generación y los de segunda generación?
- **14.10.** ¿Qué ventajas presenta el uso de CDMA en una red celular?
- **14.11.** ¿Qué desventajas presenta el uso de CDMA en una red celular?
- **14.12.** ¿Cuáles son algunas de las características fundamentales que distinguen a los sistemas celulares de tercera generación de los de segunda generación?

PROBLEMAS

- **14.1.** Considere cuatro sistemas celulares diferentes que comparten las siguientes características. Las bandas de frecuencia empleadas son de 825 a 845 MHz para la transmisión desde la unidad móvil y de 870 a 890 MHz para la transmisión desde la estación base. Un circuito duplex se compone de un canal de 30 kHz en cada dirección. Los sistemas se distinguen entre sí por el factor de reutilización, que es 4, 7, 12 y 19, respectivamente.
 - a) Suponga que el grupo de celdas en cada uno de los sistemas (4, 7, 12, 19) se duplica 16 veces. Obtenga el número de comunicaciones simultáneas que pueden ser soportadas por cada uno de los sistemas.
 - **b**) Obtenga el número de comunicaciones simultáneas que soporta una celda individual en cada sistema.
 - c) ¿Cuál es el área cubierta, en número de celdas, por cada sistema?
 - **d**) Suponga que el tamaño de celda es el mismo en los cuatro sistemas y que todos ellos cubren una zona fija de 100 celdas. Obtenga el número de comunicaciones simultáneas que pueden ser soportadas por cada sistema.